commaodore Su pEI“pET computer
Waterloo 6809 Assembler

'c!l.‘-ﬂi‘r-'rludnru ;ﬁgﬂrl’ﬁ'l‘ corTyItr

c: commodore

COMPUTER

Dieses Handbuch wurde gescannt, bearbeitet und ins PDF-Format konvertiert von
Riidiger Schuldes

schuldes@itsm.uni-stuttgart.de

(c) 2005

Waterloo 6809 Assembler

Tutorial and Reference Manual

D. D. Cowan

M. J. Shaw

Copyright 1981, by D. D. Cowan.

All rights reserved. No part of this publication may be reproduced or used in any
form or by any means - graphic, electronic, or mechanical, including photocopying,
recording, taping or information storage and retrieval systems - without the written
permission of D. D. Cowan.

Disclaimer

Waterloo Computing Systems Limited makes no representation or warranty with
respect to the adequacy of this documentation or the programs which it describes for
any particular purpose or with respect to its adequacy to produce any particular result.
In no event shall Waterloo Computing Systems Limited, its employees, its
contractors or the authors of this documentation be liable for special, direct, indirect
or consequential damages, losses, costs, charges, claims, demands, or claim for lost
profits, fees or expenses of any nature or kind.

PREFACE

The Waterloo 6809 Assembler is a full software development system to be used
on the Commodore SuperPET Microcomputer. This system contains an assembler, a
linker to connect separately assembled modules, and a monitor which includes a
loader. The assembler accepts standard assembly language, macro definitions, and
conditional assembly statements as well as good primitives for Structured
Programming.

This manual is presented in two parts. The first part is a collection of annotated
examples intended to introduce the reader to many of the features of the Waterloo
6809 Assembler. In this way, a novice is provided with a staged introduction to the
language constructs in a concise manner. The second part is a comprehensive
reference manual for the Waterloo 6809 Assembler.

Acknowledgement

Many people have made significant contributions to the design of the Waterloo
6809 Assembler and so it is difficult to acknowledge anyone individually. The design
is based upon ideas evolved and proven over the past decade in other software
projects in which these people have been involved. The major portion of the
implementation was performed by Eric Mackie, John Bossom, Fred Crigger and Jack
Schueler. Tammy Tilson was very helpful in the production of the manual.

D. D. Cowan,
M. J. Shaw,

June, 1981.

ii

Table of Contents

I. TUTORIAL9

EXAMPLE 1 . 11
EXAMPLE 2 . 16
EXAMPLE 3 . . 19
EXAMPLE 4 . . 21
EXAMPLE 5§ . 24
EXAMPLE 6 . 25
EXAMPLE 7 . 26
EXAMPLE 8 . 28
EXAMPLE 9 31

EXAMPLE10 33
EXAMPLE 11 « 35
EXAMPLE 12 « .« .« . . . 3
EXAMPLE 13 « .« . .« . 3
EXAMPLE 14 4
EXAMPLE IS 44
EXAMPLE 16 351
EXAMPLE 17 « « . . 5
EXAMPLE I8 56
EXAMPLE 19 60
EXAMPLE20 « . . . 62
EXAMPLE 21 « « « « 64
EXAMPLE 22 66
EXAMPLE 23 69
EXAMPLE2412
EXAMPLE 25 « « « . . 74
EXAMPLE26 « . . .19

2.EDITOR ¢« v « « « & « « +« . 8

3. ASSEMBLER 8
Method of Operation . . B - 1)
Files Produced By The Assembler O - £

4. 6809 ARCHITECTURE & INSTRUCTIONS 91
Registers . .]
Addressing Modes .. e e e e e e e e e
Assembly Language Instructlons B (¢ 2/
Assembler Directives 133

iv

Table of Contents

5. STRUCTURED PROGRAMMING STATEMENTS 145
If Statement 145
Guess Statement 146
Loop Statement 149
<condition> < . . 15

6. LINKER D X }
The Linker Command Fxle e e e e e e e e e . . . 153
The Load Module Name 153
The ORG Command . . e o o« . . 154
The BANKSIZE and BANKORG Commands e o . . . 154
The BANK Command 155
The INCLUDE Command 155
The EXPORT Command 156
The Linking Process 156

7. MONITOR 1%
Bank 160
Clear 160
Dump« . . . 160
Fil 0. 161
Go00 e e e e . 162
Load 0 0 0 0 . . 162
Modify « . < . ¢ 162
Passthrough 163
Quit L . . < ¢ 163
Registers 163
Stop L. . 0 s e w e e e e e .. . 164
Translate « . « . . . le4

8. SYSTEM LIBRARY REFERENCE MANUAL 167
Manipulation of Character Strings and Numbers 168
Input/Output Routines . . . B
Terminal and Serial Input/Output Routmes soe e o« .. 184
Date and Time Routines, . 185
Miscellaneous Routines 187

9. RESERVED WORDS 1"

Waterloo 6809 Assembler

Tutorial Examples

Waterloo Computing Systems Newsletter

The software described in this manual was implemented by Waterloo Computing
Systems Limited. From time-to-time enhancements to this system or completely new
systems will become available.

A newsletter is published periodically to inform users of recent developments in
Waterloo software. This publication is the most direct means of communicating
up-to-date information to the various user. Details regarding subscriptions to this
newsletter may be obtained by writing:

Waterloo Computing Systems Newsletter
Box 943,

Waterloo, Ontario, Canada

N2J 4C3

Chapter 1

TUTORIAL

The extensive software package for the Commodore Business Machines (CBM)
SuperPET includes an assembly language development system. A set of examples has
been prepared which illustrates many of the features of the 6809 assembly language
as well as of the development system. Working through the examples should provide
a good understanding of all the basics. The sections following the examples present
the details of the software development system.

10 Chapter 1

When the SuperPET is first turned on, the operating system displays the
following menu on the screen:

Waterloo microSystems
Select :

setup
monitor

apl

basic

edit

fortran
pascal
development

In order to enter the development system, type 'd’ and press 'RETURN’ on the
keyboard.

After a short pause, the following menu will then be displayed on the screen:

Waterloo microSystems
Select:

a<sm>
e<dit>
I<inker>
m<onitor>
q<uit>

a<sm> is for the assembler; e<dit> is for the editor, 1<<inker> is for the linker;
m<onitor> is for the monitor (which includes the loader); and q<<uit> is to allow a
return to the previous menu.

TUTORIAL 11

EXAMPLE 1

There are several steps involved in writing and running an assembly language
program: creating the program, assembling the program, creating the linker file,
linking the program, loading the program and executing the program. The program in
Example 1 displays the letter ‘a’ in the upper left-hand corner of the screen and is
used primarily to illustrate the steps in preparing and running an assembly language
program. In this first example, all these steps will be illustrated; in subsequent
examples, only changes which occur will be described.

Creating The Program

exl.asm
;example 1
Ida #'a ; display ‘a’
sta $8000 ; on the screen
swi
end
Notes:
1. First we enter the program using the editor (see Waterloo microEDITOR
manual).
- The first line of the above program is a comment line as specified by the
semi-colon.

- # specifies an immediate value. The character ‘a’ is loaded into
accumulator A.

- $ specifies a hexadecimal value. ’'sta $8000' stores the contents of
accumulator A into hexadecimal memory location $8000.

- Memory location $8000 is equivalent to the upper left-hand corner of the
display screen.

12

Chapter 1

- 'swi’ stands for software interrupt. The swi instruction stops the program,
passes control to the monitor, and displays the contents of the computer’s
registers on the screen.

- All 6809 assembler programs must be concluded by ‘end’, which is an
assembler directive.

After the program has been entered, save it in a file using the editor
command p (for put). For example, ‘p exl.asm’.

- The filename for each 6809 assembler program must be suffixed by '.asm’
(for assembler).

Assembling The Program

Notes:

1.

In order to assemble the program, enter ‘a’ (for asm) when selecting from the
Waterloo microSystems menu.

- When asked to ‘Enter filename:’, enter the name of the assembler file
without including the ’.asm’ suffix. The suffix is assumed and, if it is
included accidentally, a file with a '.asm.asm’ suffix will be sought.

- The assembler file will then be assembled. The assembly is complete when
the ' Assembler completed’ message is displayed. Press 'RETURN' to return
to the menu.

The assembler creates two new files with names identical to the assembler
filename except for the suffixes which are ’'.Ist’ and ’'.b09’. These files can
be examined using the editor. The ’.1Ist’ file contains a listing of the original
assembly language program along with its machine language translation (see
‘ex1.Ist’ below). The '.b09’ file contains the object code created by
assembling the assembly language source code. This file is used by the
linker described later in this example.

TUTORIAL 13

ex1.lst
0000 ;example 1
0000 86 61 lda #'a
0002 B7 80 00 sta $8000
0005 3F swi
0006 end
0006

Creating The Linker File

exl.cmd

Ilex 1"
org $1000
"ex1.b09"”

Notes:

1. The linker requires a '.cmd’ (command) file which the user must create
using the editor. The file must be saved with a name such as exl.cmd.

- The first line of the '.cmd’ file is the name (in quotes) of the load module to
be created.

- The second line indicates the hexadecimal address at which the module is
to be loaded. (org stands for origin.)

- The third line gives the name (in quotes) of the object code file which is to
be used in the desired load module.

14

Chapter 1

Linking The Program

Notes:

1.

To start the linking process, enter ‘I’ (for linker) when selecting from the
Waterloo microSystems menu.

- When asked to 'Enter filename:’, enter the name of the command file
without including the '.cmd’ suffix which is assumed.

- The linking step will then take place with the 'Linker completed’ message
indicating its completion. Press '/RETURN’ to return to the menu.

The linker creates two new files whose names, except for the suffixes,
correspond to the name given in the first line of the '.cmd’ file. Their
suffixes are '.mod’ and ’'.map’. These files can be examined using the
editor.

- The '.mod’ file ("ex1.mod’) is the executable load module which is to be
run in the next step.

- The '.map’ file contains information which shows how ’‘ex1.b09’ is
mapped into ‘ex1.mod’.

Loading and Running The Program

Notes:

1.

In order to run the program, invoke the monitor by entering 'm’ when
selecting from the Waterloo microSystems menu.

- When prompted by '>’, say 'l ex].mod’. This will load the module created
by the linker into memory at the address specified by ‘org’ in the '.cmd’ file.

- When next prompted by '>’, say ‘g 1000’. This will start execution at
hexadecimal address 1000 which is the address into which the first
instruction of the program was just loaded.

TUTORIAL 15

- The program will then run. When finished, the contents of the computer’s
registers will be displayed on the screen by the monitor because of the
aforementioned 'swi’.

2. When prompted by '>’, entering 'q’ (for quit) will cause a return to the
menu.
3. The monitor has many commands which are useful for debugging programs

and these are described in another section of this document.

16 Chapter 1
EXAMPLE 2
The following program uses a routine called putchar_ from the system library in

order to display a character on the SuperPET's display screen.

Creating The Program

ex2.asm
;example 2
xref putchar_ ; reference to system routine
Idb #’a ; display 'a’
jsr putchar_ ; on the screen
swi
end

Notes:

1. 'xref’ defines an external reference. A module needs an xref declaration if it
is used in the current program while its definition is in some other module or
program.

2. putchar_ is the name of an external routine. The '_’ is the left-pointing arrow

on the keyboard and indicates that the routine is from the system library. The
character to be displayed by putchar_ must be placed in the least significant
byte of the D accumulator (B accumulator) before the routine is called.

TUTORIAL 17

Assembling The Program

ex2.1st
0000 ;example 2
0000 xref putchar_
0000
0000 C6 61 1db #'a
0002 BD 00 00 jsr putchar_
0005 3F swi
0006 end
0006

Notes:

1. The address for putchar_ in the line labelled 0002 is not known at assembly

time and so is temporarily left as 0000.

Creating The Linker File

ex2.cmd

Ilelel

org $1000

include "disk/1.watlib.exp”
"ex2.b09”

18

Notes:

Chapter 1

The ’include "disk/1.watlib.exp” line is needed because a system library
routine is to be used. The watlib.exp file, which should be on a diskette in
disk drive 1, tells where in rom (read-only-memory) each system library
routine can be found. (wat stands for Waterloo, lib for library, and exp for
exports.) If this file is on a diskette in drive O then the 'disk/1.’ designation
should be deleted.

TUTORIAL 19

EXAMPLE 3

The following program displays a string of characters on the screen.

Creating The Program

ex3.asm
;example 3
xref putchar_ ; reference to system routine
ldx #string ; put address of string in X
next Idb ,x+ ; load character into B
beq quit 5 quit if null byte
pshs x ; save X
jsr putchar_ ; display character
puls x ; restore X
bra next ; repeat loop
quit swi

string fce "hello”

fcb 0
end

Notes:

1. 'string fcc "hello” defines a string of characters beginning at the address
indicated by the label string. The fcc is an assembler directive meaning form
constant character string.

2, 'fcb 0’ puts a zero byte at the end of the string "hello” and is a convention
used to indicate the end of the string. The fcb is also an assembler directive
and means form constant byte.

3. Branching to the label next with the command ’bra next’ puts the program

into a loop.

4, Each iteration of the loop causes a character to be displayed.

20

Chapter 1

The program exits from the loop when the null character at the end of the
string is reached.

Index register X is used to store the address of the next character to be
displayed. Its contents are pushed on the stack ('pshs x') before putchar_ is
called and pulled off the stack ('puls x) afterwards because it is possible that
putchar_ uses index register X as a work area. If a save and restore are not
done, the character address could be lost.

TUTORIAL 21
EXAMPLE 4
The following program introduces some structured programming features

available in the assembly language.

Creating The Program

ex4.asm
;example 4
xref putchar_ ; reference to system routine
Idx #string ; put address of string in X
loop ; loop
1db,x+ ; load character into B
quifeq 5 quit if null byte
pshsx ; save X
jsrputchar_ ; display character
pulsx ; restore X
endloop ; endloop
swi

string fcc "hello”
fcb $0d
fcb 0
end

22 Chapter 1

Notes:

1. The loop/endloop control structure replaces the label next and 'bra next’
from example 3. 'quif eq’ replaces 'beq quit’ and the label quit. quif means
quit if the condition code being tested is set. The possible condition codes
are:

CC - carry clear

CS - carry set

EQ - equal

GE - greater than or equal to

GT - greater than

HI - unsigned greater than (high)
HS - unsigned greater than or equal to
LE - less than or equal to

LO - unsigned less than (low)

LS - unsigned less than or equal to
LT - less than

MI - less than

NE - not equal

PL - greater than or equal to (plus)
VC - overflow clear

VS - overflow set

2. $0d is a ‘carriage-return’. When example 4 is run, the string "hello” will now
appear on a line all by itself because, after it is displayed, it will be followed
by the ’'carriage-return’.

TUTORIAL 23

Assembling The Program

ex4.Ist
0000 ;example 4
0000 xref putchar_
0000
0000 8E 00 11 Idx #string
0003 loop
0003 E6 80 Idb ,x+
0005 27 09 quif eq
0007 34 10 pshs x
0009 BD 00 00 jsr putchar_
000C 35 10 puls x
000E 20 F3 endloop
0010 3F swi
0010
0011 68 65 6C 6C string fcc "hello”
0016 OD fcb $0d
0017 00 fcb O
0018 end

Notes:

1. This listing indicates how loop, endloop, and quif are handled: loop is

ignored, endloop is replaced by bra, and quif eq is replaced by beq to the
instruction after endloop.

24

EXAMPLE 5

Chapter 1

The following program uses two system library routines: putchar_ and putnl_.

Creating The Program

ex5.asm
;example 5

xref putchar_ ; references to

xref putnl_ ; system routines

Idx #string ; put address of string in X

loop ; loop
Idb,x+ ; load character into B
quifeq 5 quit if null byte
pshsx ; save X
jsrputchar_ ; display character
pulsx ; restore X

endloop ; endloop

jsr putnl_ ; skip to a new line

swi

string fcc "hello”
fcb O
end

Notes:

1. putnl_ is a routine which skips to a new line on the display screen.

TUTORIAL 25
EXAMPLE 6
The following program replaces the loop/endloop with a loop/until control

structure.

Creating The Program

ex6.asm
;example 6
xref putchar_ ; references to
xref putnl_ ; system routines
ldx #string ; put address of string in X
1db ,x+ ; load character into B
loop ; loop
pshsx ; save X
jsrputchar_ ; display character
pulsx ; restore X
1db,x+ ; load character into B
until eq ; until null byte in B
jsr putnl_ ; skip to a new line
swi

string fcc "hello”

fcb O
end
Notes:
1. This program is not equivalent to the previous one in that this one would not

work if "hello” was replaced by the null string. The check for the null
character here comes after putchar_ has already been called once.

26

EXAMPLE 7

Chapter 1

The following program uses the system library routine getchar_ to input a
character from the terminal and then, using the if/else/endif construct, decides which

of two strings to display.

Creating The Program

ex7.asm
;example 7

xref getchar_ ; references to

xref putchar_ ; system routines

xref putnl_

jsr getchar_ ; read character

cmpb #'h

if eq ; if equal to 'h’
1dx #hello ; load address of "hello”

else ; else
1dx #goodbye ; load address of "goodbye”

endif ; endif

loop ; loop
Idb,x+ ; load character into B
quifeq ; quit if null byte
pshsx ; store X
jsrputchar_ ; display character
pulsx ; restore X

endloop ; endloop

jst putnl ; skip to a new line

swi

hello fcc "hello”
fcb O
goodbye fcc "goodbye”
fcb O
end

TUTORIAL 27

Notes:

The if/else/endif is a useful construction for selection which can improve the
readability of a program. The if is used with condition codes in a manner
similar to the quif. The reader might wish to examine the ’.Ist’ file for this
example to see how these constructs translate into machine language.

If the input character is an 'h’ then the string "hello” is displayed; otherwise,
the string "goodbye” is displayed.

The character which is read is returned in the least significant byte of
accumulator D.

28 Chapter 1
EXAMPLE 8

The following program demonstrates how to implement a separately assembled
subroutine called display.

Creating The Program

ex8m.asm

;example 8 mainline routine

xref initstd_ ; references to
xref getchar_ ; system routines
xref putnl
xref display ; reference to user routine
jsr initstd_ ; initialize standard 1/O
jsr getchar_ ; read character
cmpb #'h
if eq ; if equal to 'h’

1dd #hello ; load address of "hello”
else ; else

1dd #goodbye ; load address of "goodbye”
endif ; endif
jsr display ; display string
jsr putnl_ ; skip to a new line
swi

hello fce "hello”

fcb 0
goodbye fcc "goodbye”
fcb 0
end
Notes:
1. This program is equivalent to Example 7, except that the portion of the

program which displayed strings is now in a separate subroutine called
display.

TUTORIAL 29

2. The subroutine display must be mentioned in an xref command.

3. A new system routine, initstd_, has been introduced which should be used to
open the screen and keyboard as files. It is good programming practice to use
initstd— even though this particular system opens these two files for its own
use anyway. That is why it was not necessary to call initstd_ in previous
programs.

ex8s.asm

;example 8 subroutine

xdef display ; definition for external use
xref putchar_ ; reference to system routine
display tfr d,x ; transfer D to X
loop ; loop
1db ,x+ ; load character into B
quifeq ; quit if null byte
pshsx ; save X
jsrputchar_ ; display character
pulsx ; rtestore X
endloop ; endloop
rts
end
4. In order for the routine display to be accessed as an external reference by the

mainline program, it has to be declared as an xdef in the subroutine. xdef
stands for external definition.

5. Subroutines must have an rts command to return control to the calling
program. Execution continues with the instruction following the jsr
command which called the subroutine.

30 Chapter 1

Creating The Linker File

ex8.cmd
Ilexsll
org $1000
include "disk/1.watlib.exp”
"ex8m.b09”
"ex8s.b09”
Notes:
1. Both "ex8m.b09” and "ex8s.b09” must be included in the linker command

file so that they will be included in the "ex8" load module.

TUTORIAL

EXAMPLE 9

31

The following program demonstrates passing a parameter to a subroutine on the

stack instead of in the accumulator.

Creating The Program

ex9m.asm

;example 9 mainline routine
xref initstd_
xref getchar_
xref putnl_
xref display

jsr initstd_
jsr getchar_
cmbp #'h
if eq

1dx #hello
else

1dx #goodbye
endif
pshs x
jsr display
jsr putnl_
swi

hello fce "hello”
fcb 0
goodbye fcc "goodbye”
fcb 0
end

; references to
; System routines

; reference to user routine

; initialize standard I/O
; read character

; if equal to 'h’

; load address of "hello”

; else

; load address of "goodbye”
; endif

; push address onto S

; display string

; skip to a new line

Notes:

1. This program is equivalent to that in example 8.

32 Chapter 1
2. The address of the string to be displayed is loaded into index register X and
is then pushed onto the stack.
€x9s.asm
;example 9 subroutine
xdef display ; definition for external use
xref putchar_ ; reference to system routine
display puls y ; pull return address into Y
puls x ; pull string address into X
pshs y ; push return back onto S
loop ; loop
1db,x+ ; load character into B
quifeq 5 quit if null byte
pshsx ; save X
jsrputchar_ ; display character
pulsx ; restore X
endloop ; endloop
Its
end
Notes:
1. When a jsr is executed, the return address is stored on the top of the stack.
This address is removed from the stack by the rts command.
2. The 'puls y’ instruction pulls the return address from the stack into index

register Y. ‘puls x’ pulls the address of the string to be displayed from the
stack into index register X. Then the return address is pushed back onto the
stack by 'pshs y’.

TUTORIAL 33
EXAMPLE 10
The following program uses 'Ids’ to set up its own stack.
Creating The Program
ex10m.asm
;example 10 mainline routine
xref initstd_ ; references to
xref getchar_ ; system routines
xref putnl_
xref display ; reference to user routine
Ids #$0fff ; initialize S pointer
jsr initstd_ ; initialize standard 1/O
jsr getchar_ ; read character
cmpb #'h
if eq ; if equal to 'h'
1dx #hello ; load address of "hello”
else ; else
1dx #goodbye ; load address of "goodbye”
endif ; endif
pshs x ; push address onto S
jsr display ; display string
jsr putnl_ ; skip to a new line
swi
hello fcc "hello”
fcb 0
goodbye fcc "goodbye”
fcb 0
end
Notes:
1. ‘Ids #$Offf’ starts the stack at $Offf instead of using the system stack which

is only about 40 bytes long. Use of the system stack is dangerous since it
could easily overflow and destroy system code.

34

Chapter 1

The display routine is the same as the display routine in Example 9.

The 6809 can have two stacks by using the S register and the U register as
stack pointers. The U register is manipulated in the same way as the S
register. The U register is also used in bank-switching which is discussed in
some later examples.

TUTORIAL

EXAMPLE 11

35

The following program employs another method of passing a parameter on the

stack.

Creating The Program

exllm.asm

;example 11 mainline routine

hello

goodbye

xref initstd_
xref getchar_
xref putnl_
xref display

1ds #$0fff
jsr initstd_
jsr getchar_
cmpb #'h
if eq

1dx #hello
else

1dx #goodbye
endif
pshs x
jsr display
leas 2,s
jsr putnl_
swi

fcc "hello”
fcb 0

fce "goodbye”
fcb 0

end

; references to
; system routines

; reference to user routine

; initialize S pointer
; initialize standard 1/O
; read character

; if equal to 'h’

; load address of "hello”

; else

; load address of "goodbye”
; endif

; push address onto S

; display string

; remove address from S

; skip to a new line

36 Chapter 1

Notes:

I. ‘leas 2,s’ adds 2 to the stack pointer for stack S. The contents of index
register X are pushed onto the stack before display is called. After display, it
is good programming practice to remove the stored value from the stack. The
'leas 2,s’ instruction achieves this by changing the stack pointer. The value
is actually still there in a physical sense, but, logically, it has been deleted
since it is no longer considered part of the stack.

exlls.asm
;example 11 subroutine
xdef display ; definition for external use
xref putchar_ ; reference to system routine
display 1dx 2,s ; pull address into X
loop ; loop
1db ,x+ s load character into B
quifeq 5 quit if null byte
pshsx ; save X
jsrputchar_ ; display character
pulsx ; restore X
endloop ; endloop
Its
end
2. "Idx 2,s’ allows the parameter being passed to be accessed without having to

pull the return address from the stack first and push it back on the stack
afterwards.

TUTORIAL 37
EXAMPLE 12

In the following program, the subroutine, instead of the mainline routine,
removes the parameter from the stack.

Creating The Program

exl12m.asm

;example 12 mainline routine

xref initstd_ ; references to
xref getchar_ ; system routines
xref putnl-
xref display ; reference to user routine
Ids #$0fff ; initialize S pointer
jsr initstd_ ; initialize standard I/O
jsr getchar_ ; read character
cmpb #'h
if eq ; if equal to 'h’
1dx #hello ; load address of "hello”
else ; else
1dx #goodbye ; load address of "goodbye”
endif ; endif
pshs x ; push address onto S
jsr display ; display string
jsr putnl_ ; skip to a new line
swi

hello fcc "hello”
fcb O
goodbye fcc "goodbye”
fcb O
end

38

ex12s.

asm

Chapter 1

Notes:

;example 12 subroutine
xdef display
xref putchar_

display Idx 2,s

loop
1db,x+
quifeq
pshsx
jsrputchar_
pulsx

endloop

ldd ,s++

std ,s

rts

end

; definition for external use
; reference to system routine

; pull address into X

; lo
>
H
H
H

.
b

op

load character into B
quit if null byte
save X

display character
restore X

; endloop
; pull return address from S
; push in place of parameter

‘1dd ,s++' loads the return address into accumulator D and adds 2 to the
stack pointer for stack S. The stack pointer now points to where the
parameter is located so that, when the ’'std ,s’ instruction is executed, the
parameter is deleted since the return address is stored in its place.

TUTORIAL 39
EXAMPLE 13

The following version of the subroutine display introduces the jmp[] indirect
command. (The square brackets indicate indirection.)

Creating The Program

ex13s.asm

;example 13 subroutine

xdef display ; definition for external use
xref putchar_ ; reference to system routine
display 1dx 2,s ; pull address into X
loop ; loop
1db,x+ ; load character into B
quifeq 5 quit if null byte
pshsx ; save X
jsrputchar— ; display character
pulsx ; Trestore X
endloop ; endloop
leas 4,s ; remove return address & parm
jmp [-4,s] ; jump indirect through return
end
Notes:
1. 'leas 4,s’ removes the parameters from the stack by moving the stack pointer

and 'jmp [-4,s]’ causes a jump indirect through the return address on the
stack. This achieves a return from the subroutine without using the RTS
instruction.

- Using jump indirect is not a recommended method of returning from a
subroutine. It is shown here simply as an illustration of jump indirect.

40 Chapter 1

EXAMPLE 14

The SuperPET had 96K of RAM memory but only 32K is directly addressable.
The remaining 64K is divided up into 16 blocks of 4K each. Each 4K block is called a
'bank’ and can be accessed by hardware and software 'bank-switching’. Example 14
illustrates the implementation of bank-switching in assembly language by placing a
subroutine in each of bank 1, bank 4, and bank 7.

Creating The Program

exl4m.asm

;example 14 test of bank-switching
;mainline routine

xref rtnl ; references to
xref rtnd ; definition for external uses
xref rtn7
xref bankinit_ ; references to
xref initstd_ ; system routines
xref putnl_
Ids #$0fff ; initialize S pointer
jsr bankinit_ ; initialize bank-switching
jsr initstd_ ; initialize standard 1/O
jsrrtnl ; display "1’
jsr putnl_ ; skip to a new line
jsr rtn4 ; display "4’
jsr putnl_ ; skip to a new line
jsr rtn7 ; display '7’
jsr putnl_ ; skip to a new line
swi
end
Notes:
1. This program and the following subroutines would work just as well if the

subroutines were placed in main memory with the mainline routine. There is
nothing special about the routines themselves.

TUTORIAL 41

2. In order for bank-switching to occur, it is necessary for the system routine
bankinit_ to be xref’ed and called at the beginning of the program. bankinit_

sets up a program in main memory so that it is possible to jump from main
memory to a bank and back again.

3. The U register is used to manage a stack for bank-switching and is not
normally accessible to the user program if bank-switching is being used.

exl4rtnl.asm

;example 14 subroutine rtn1 which

; operates from bank 1
xdef rtnl ; definition for external use
xref putchar_ ; reference to system routine
rtnl Idb #'1 ; load '1’ into B
jsr putchar_ ; display character
Its
end

exl4rtn4.asm

;example 14 subroutine rtn4 which

; operates from bank 4
xdef rtn4 ; definition for external use
xref putchar— ; reference to system routine
rtnd 1db #'4 ; load '4’ into B
jsr putchar_ ; display character
rts

end

42

exl4rtn7.asm

Chapter 1

;example 14 subroutine rtn7 which

’

rtn7

operates from bank 7

xdef rtn7 ; definition for external use
xref putchar_ ; reference to system routine
Idb #'7 ; load '7' into B

jsr putchar_ ; display character

rts

end

Creating The Linker File

exl4.cmd

Notes:

” exl 4”

org $1000

include "disk/1.watlib.exp”
"ex14m.b09"

bankorg $9000 ;optional
banksize $1000 ;optional
bank 1

"ex14rtn1.b09”

bank 4

"ex14rtn4.b09”

bank 7

"ex14rtn7.b09”

The first four lines of the '.cmd’ file are the same as usual and cause the
mainline routine to be loaded at address $1000 in main memory.

The 'bankorg $9000’ directive is optional since $9000 is the default value for
the origin of the bank addresses. Only one bank can be accessed at a time.

TUTORIAL 43

- $9000 to $9fff acts as a 4K window which allows one bank to be seen while
the rest remain hidden. If a different bank is needed, the address of the
current bank is switched out and a new one switched in. This change of
addressing is referred to as 'bank-switching’.

3. The 'banksize $1000’ directive is optional as well since $1000 (4K) is the
default value for the size of the bank.

4, ‘bank 1’ causes 'ex14rtn1.b09” to be placed in bank 1. 'bank 4’ causes
"ex14rtn4.b09” to be placed in bank 4. 'bank 7’ causes "ex14rtn7.b09" to be
placed in bank 7.

- More than one module could be placed in a single bank simply by
specifying more than one module name after the bank directive. The user
must be aware of the total size of all routines so that the routines plus the
special bank-switching code do not exceed 4K bytes for any bank.

5. The '.cmd’ file may contain comments which are preceded by semi-colons.

44

EXAMPLE 15

Chapter 1

The following program shows how to pass data between programs stored in
different banks. The data is normally passed using the main memory.

Creating The Program

exl5Sm.asm

;example 15 test of bank-switching
; with data in a bank
;mainline routine

xdef messagel

xref rtnl

xref rtn4

xref rtn7

xref bankinit_

xref initstd_

; external use of string
; references to
; definition for external uses

; references to
; system routines

xref putnl_
Ids #$0fff ; initialize S pointer
Jjsr bankinit_ ; initialize bank-switching
jsr initstd_ ; initialize standard I/O
jsrrtnl ; display "hello ... 1"
jsr putnl_ ; skip to a new line
jsr rtnd ; display "hello ... 4"
jsr putnl_ ; skip to a new line
jsr rtn7 ; display "hello ... 7"
jsr putnl_ ; skip to a new line
swi
messagel rmb 17

fcb 0
end

Notes:

1. Data is passed from one bank to another by passing it from one bank to main

memory and then onto the other bank.

TUTORIAL 45

The mainline routine which will be loaded into main memory calls
subroutines rtnl, rtn4, and rtn7 which will be loaded into bank 1, bank 4,
and bank 7 respectively.

Subroutines rtnl, rtn4, and rtn7 call subroutine getmessage which will be
loaded into bank 10.

Subroutines rtnl, rtn4, and rtn7 wish to have access to the character string
stored beginning at the location labelled "message” in subroutine
"getmessage”. They cannot access message directly because each bank
occupies the same address space and so only one bank is directly accessible
at any moment in time.

The messagel label is xdef'ed in the mainline program so that it can be
xref’ed by the subroutines, including subroutine getmessage.

Subroutine getmessage copies the string of characters from the location
message in routine getmessage to the location messagel in the mainline
program.

Subroutines rtnl, rtn4, and rtn7 access the string of characters located at
messagel in main memory.

46 Chapter 1

ex15getm.asm

;example 15 subroutine to handle

; data in bank switched
; memory
xdef getmessage ; definition for external use
xref messagel ; reference to system label
getmessage lda 2,s ; load character into A
sta number ; store character
Idx #message ; load address of message
Idy #messagel ; load address of messagel
loop ; transfer string
Ida,x+ ; "hello from bank x”
quifeq ; from message to
sta,y+ ; messagel in the
endloop ; mainline routine
Idd ,s+ ; load return address &
std ,s ; store in place of parameter
Its
message fcc "hello from bank ”
number fee "x”
fcb 0
end
Notes:
1. The getmessage module stores a character whose address is passed as a
parameter on the stack at location "number”.
2. getmessage copies the 18 characters beginning at location message and

ending at location number to the location labelled message! in the mainline
program. (messagel is xdef’ed.)

TUTORIAL 47

ex15rtnl.asm

;example 15 subroutine rtnl which

5 operates from bank 1
; and sends a message from
5 another bank
xdef rtnl ; definition for external use
xref getmessage ; references to
xref display ; user routines
xref messagel ; reference to string
rtnl 1db #'1 ; load '1" into B
pshs b ;push ‘1’ onto S
jsr getmessage ; transfer message
ldx #messagel ; load address of messagel
pshs x ; push address onto S
jsr display ; display message
Its
end
Notes:
1. The character ‘1’ is pushed onto the stack and passed as a parameter to
subroutine getmessage.
2. After getmessage has copied its message to messagel in main memory, rtnl

pushes the address of message! onto the stack and calls the display routine to
put the message on the screen. The display routine is not shown in this
example because it is the same routine as in Example 12.

48 Chapter 1

ex15rtnd4.asm

;example 15 subroutine rtn4 which

5 operates from bank 4
; and sends a message from
s another bank
xdef rtn4 ; definition for external use
xref getmessage ; references to
xref display ; definition for external uses
xref messagel ; reference to string
rtnd 1db #'4 ; load ‘4’ into B
pshs b ; push B onto S
jsr getmessage ; transfer message
ldx #messagel ; load address of messagel
pshs x ; push address onto S
jsr display ; display message
Its
end
Notes:
1. The character ‘4’ is pushed onto the stack and passed as a parameter to

subroutine getmessage.

2. getmessage and display are called as in rtnl.

TUTORIAL 49

ex15rtn7.asm

;example 15 subroutine rtn7 which
operates from bank 7

and sends a message from
another bank

ws v

xdef rtn7 ; definition for external use
xref getmessage ; references to
xref display ; definition for external uses
xref messagel ; reference to string
rtn7 1db #'7 ; load '7’ into B

pshs b ; push ‘7' onto S
jsr getmessage ; transfer message
ldx #messagel ; load address of messagel
pshs x ; push address onto S
jsr display ; display message
Its
end

Notes:

1. The character ‘7' is pushed onto the stack and passed as a parameter to

subroutine getmessage.

2. getmessage and display are called as in rtnl.

50

Creating The Linker File

ex15.cmd

Chapter 1

Ilex 1 5”

org $1000

include “disk/1.watlib.exp”
"ex15m.b09”

"ex12s.b09"

bankorg $9000 ;optional
banksize $1000 ;optional
bank 1

"ex15rtn1.b09”

bank 4

"ex15rtn4.b09"

bank 7

"ex15rtn7.b09"

bank 10

"ex15getm.b09”

NOTES:

1.

The linker file is similar to the one in Example 14.

TUTORIAL 51
EXAMPLE 16

The following program uses a subroutine read and a subroutine display to read a
line of characters from the keyboard and then redisplay it on the screen.

Creating The Program

ex16.asm

;example 16 mainline routine

xref initstd_ ; references to
xref putnl_ ; system routines
xref display ; references to
xref read ; user routines
Ids #$0fff ; initialize S pointer
jsr initstd_ ; initialize standard 1/O
loop ; loop
ldx #storage 5 load address
jsrread 5 read string
ldx #storage 3 load address
1db,x 3 load character into B
quifeq 5 quit if null string
jsrdisplay ; display string
jsrputnl_ ; skip to a new line
endloop ; endloop
swi

storage rmb 41
end

Notes:
1. The number of characters in the input line cannot be more than 40.
- 41 bytes are reserved beginning at the location labelled ’'storage’.

- 1 byte is required to store the end-of-line character. (The read subroutine
stores 0 to indicate the end of the character string.)

52 Chapter 1

2. The address of ’storage’ is placed in index register X and is passed to
subroutines read and display.

- The read subroutine will read characters from the keyboard and will store
them beginning at the address in index register X. Characters will be read
and stored until a carriage-return is entered. If more than 40 characters are
entered, the extra characters will be stored in locations not intended for that
purpose and this could corrupt the program.

- The display subroutine will display characters stored beginning at the
address in index register X. Characters will be displayed until the end-of-line
character is reached.

3. After the line of characters has been displayed, putnl_ is called.
4, Lines are read and displayed until a null line is entered.
ex16sr.asm

;example 16 subroutine read

xdef read ; definition for external use
xref getchar_ ; reference to system routine
read loop ; loop
pshsx ; save X
jsrgetchar_ ; read character
pulsx 5 restore X
cmpb #$0d ; carriage return?
quifeq ; if yes, then quit
stb,x+ ; store character
endloop ; endloop
Ida #0 ; 0 is null byte
sta ,x ; store as end-of-string
rts

end

TUTORIAL 53

Notes:

1. The read subroutine gets and stores characters until the character entered is
equivalent to $0d which is a carriage-return.

2. The $0d could be stored and used as the end-of-line character, but in order to
be consistent with the convention introduced earlier, a O is stored instead.

ex16sd.asm

;example 16 subroutine display

xdef display ; definition for external use
xref putchar_ ; reference to system routine
display loop ; loop
1db,x+ ; load character into B
quifeq ; quit if null byte
pshsx ; save X
jsrputchar— ; display character
pulsx 5 restore X
endloop ; endloop
1ts

end

54 Chapter 1

EXAMPLE 17

Example 17 demonstrates how to create and use one's own personal library of
subroutines. Two routines, read and display, have been created with object files
called ex16sr.b09 and ex16sd.b09 respectively. Now, a personal library of useful
routines is to be created which can be included in any load module by a single
statement in the ‘.cmd’ file.

Creating The Library File

ex17.1ib
"ex16sr.b09”
"ex16sd.b09”
Notes:
1. The name of the library file can be anything. It does not have to end with the

suffix ’.lib’.

2. The library file must contain the quoted names of the '.b09’ files for the
library subroutines.

Creating The Linker File

ex17.cmd

"ex 1 7"

org $1000

include "disk/1.watlib.exp”
"ex16m.b09”

include ex17.1ib

TUTORIAL 55

Notes:

1. ‘include ex17.1ib’ is effectively the same as saying
"ex16sr.b09"
"ex16sd.b09"
which is what is contained in the ’.cmd’ file for Example 16. Thus, running
the linker with ‘ex17.cmd’ will include the read and display subroutines.

56

EXAMPLE 18

Chapter 1

Example 18 inputs from the keyboard and outputs to the printer.

Creating The Program

ex18m.asm

;example 18 mainline routine

xref initstd_

xref openf_

xref closef_

xref putnl_

xref fputnl_

xref display

xref fdisplay
xref read

Ids #$0fff
jsr initstd_
ldd #mode
pshs d
ldd #outfile
jsr openf_
leas 2,s
std outptr
if ne
loop
ldx #storage
jsrread
I1dx #storage
1db,x
quifeq
Iddoutptr
jsrfdisplay
Iddoutptr
jsrfputnl
endloop
lddoutptr
jsrclosef_

; references to
; system routines

; references to
; definition for external uses

; initialize S pointer

; initialize standard 1/O

; load address of file mode
; push file mode onto S

; load address of filename
; open file

; remove file mode from S
; file control block address
; if file opened okay

We we we We we we Ve

C we we we

b4

loop
load address
read string
load address
load character into B
quit if null string
load file control block
display string
load file control block
skip to a new line
endloop
load file control block
close file

TUTORIAL

Notes:

outfile
mode
outptr

storage
errmsg

else
ldx #errmsg
jsrdisplay
jsrputnl_

endif

swi

fce "printer”
fcb 0

fcc "w"

fcb 0

rmb 2

rmb 41

fce "open error”

57

; else

s load address of errmsg
; display string

; skip to a new line

; endif

fcb 0
end

The printer is treated as a file. A file must be opened before it is used and
closed afterwards. For this purpose, the system routines openf_ and closef_
are provided.

fputnl_ is the same as putnl_ except that it allows a particular file to be
specified. putnl_ uses the standard output device which initstd_ defines as
the screen.

fdisplay is a new user routine which works like display except that it outputs
to a specified file instead of to the standard output device.

Before openf_. is called, the address of the access mode for the file must be
pushed on the stack and the address of the file’s name must be placed in the
accumulator.

A pointer to the file control block is returned in accumulator D if the file is
opened properly; otherwise, zero is returned.

If the printer file is not opened, the error message “open error” is displayed
on the screen using display and putnl_.

If the printer file is opened, read is used to input a string of characters from
the keyboard and fdisplay is called to display the characters on the printer.

58 Chapter 1

8. Lines are read and displayed until a null line is entered.
9. This program uses the subroutine “read” from Example 16.
ex18sf.asm

;example 18 subroutine fdisplay
xdef fdisplay ; definition for external use
xref fputchar_ ; reference to system routine

fdisplay std outptr

loop ; loop
1db,x+ ; load character into B
quifeq 5 quit if null byte
pshsx ; save X
pshsd 5 push character onto S
Iddoutptr ; load file control block
jsrfputchar_ ; display character
leas2,s ; remove parameter from S
pulsx ; restore X

endloop ; endloop

Its

outptr rmb 2
end

Notes:
1. fdisplay is passed the pointer to the printer file in accumulator D.

2. fdisplay passes this pointer to the system routine fputchar._.

TUTORIAL 59

Creating The Library File

ex.lib

"ex16sr.b09”
"ex16sd.b09"
"ex18sf.b09"

Creating The Linker File

ex18.cmd
IIex 1 8"
org $1000
include "disk/1.watlib.exp”
"ex18m.b09”
include "ex.lib"
Notes:
1. ‘include "ex.lib" is effectively the same as saying
"ex16sr.b09"
"ex16sd.b09"
"ex18sf.b09".

- The object modules "ex18m.b09”, "ex16sr.b09”, "ex16sd.b09", and
"ex18sf.b09” will all be linked into the "ex18” load module.

60

EXAMPLE 19

Chapter 1

Example 19 inputs from the keyboard and outputs to a diskette file.

Creating The Program

ex19m.asm

;example 19 mainline routine

xref initstd_

xref openf_

xref closef_

xref putnl_

xref fputnl_

xref display

xref fdisplay
xref read

Ids #$O0fff
jsr initstd_
ldd #mode
pshs d
1dd #outfile
jsr openf_
leas 2,s
std outptr
if ne
loop
ldx #storage
jsrread
ldx #storage
1db,x
quifeq
Iddoutptr
jsrfdisplay
lddoutptr
jsrfputnl_
endloop
lddoutptr
jsrclosef_

; references to
; system routines

; references to
; definition for external uses

; initialize S pointer

; initialize standard 1/O

; load address of file mode
; push file mode onto S

; load address of filename
; open file

; remove file mode from S
; file control block address
; if file opened okay

3 loop
3 load address
; read string

3 load address

; load character into B

; quit if null string

5 load file control block
; write string

; load file control block
; skip to a new line

; endloop

; load file control block
; close file

TUTORIAL

Notes:

outfile
mode
outptr

storage
errmsg

else
ldx #errmsg
jsrdisplay
jsrputnl_

endif

swi

fee "tempfile”
fcb 0

fce "w”

fcb 0

rmb 2

rmb 41

fce "open error”
fcb O

end

; else

3 load address of errmsg
; display string

; skip to a new line

; endif

61

This program is identical to that in example 18 except that the name of the
output file is different. Instead of displaying the string of characters on the
printer, it is to be written to a diskette file called "tempfile”. (All filenames

are assumed to refer to diskette files if no device is specified.)

- "tempfile” may be examined using the editor.

If "tempfile” is to be placed on the diskette in disk drive 1 then the character
string "disk/1.tempfile” should be assigned to outfile. By default, "tempfile”
refers to disk drive 0.

The program uses the subroutine "read” from Example 16.

62

EXAMPLE 20

Chapter 1

The following program uses the read routine to read two different strings into
memory and then uses the system routine streq— (string equality) to compare the two

strings.

Creating The Program

ex20m.asm

;example 20 mainline routine
xref initstd_
xref putnl_
xref streq—
xref display
xref read

Ids #$0fff
jsr initstd_
ldx #stringl
jsr read
Idx #string2
jsr read
1dd #string2
pshs d
ldd #stringl
jsr streq—
leas 2,s
if ne

ldx #true
else

ldx #false
endif
jsr display
jsr putnl_
swi

string1 rmb 41
string2 rmb 41
true fcc "TRUE"

; references to
; system routines

; references to
; definition for external uses

; initialize S pointer

; initialize standard I/O

; load addressl

; read string

; load address2

; read string

; load address2

; push address onto S

; load address1

; compare two strings

; remove string2 address from S
; if strings are equal

; load address of "TRUE"

; else

; load address of "FALSE"
; endif

; display "TRUE" or "FALSE"
; skip to a new line

TUTORIAL 63

fcb 0

false fcc "FALSE’
fcb O
end

Notes:

1. The system routine streq— compares two strings for equality. Before streq-. is
called, the address of one string must be placed on the stack and the address
of the other string must be placed in accumulator D.

2. If the two strings are equal, streq_ returns a non-zero value in accumulator
D. If they are not equal, zero is returned.

- If the two strings are equal then the word "TRUE" is displayed on the screen
using the display subroutine; otherwise, the word "FALSE’ is displayed.

3. The program uses the subroutine “read” from Example 16.

64 Chapter 1

EXAMPLE 21

The following program uses the read routine to read two different strings into
memory. The system routine length_ is used to get the length of each string and, if the
Iengths are equal, the system routine equal_ is called to compare the two strings.

Creating The Program

ex21lm.asm

;example 21 mainline routine

xref initstd_ ; references to

xref putnl_ ; system routines
xref length_

xref equal_

xref display ; references to

xref read ; user routines

Ids #$0fff ; initialize S pointer

jsr initstd_
ldx #stringl

; initialize standard I/O
; load addressl

jsr read ; read string
Idd #stringl ; load addressl
jsr length ; get length of stringl

std lengthl
ldx #string2

; store length at lengthl
; load address2

jsr read ; read string
Idd #string2 ; load address2
jsr length_ ; get length of string2
cmpd lengthl ; compare lengths
if eq ; if lengths are equal
pshsd 5 push length onto S
Idd #string1 5 load addressl
pshsd ; push address onto S
1dd #string2 ; load address2
jsrequal - 3 compare strings
leas4,s ; remove parameters from S
ifne ; if strings are equal
ldx #true ; load address of "TRUE’
else ; else
ldx #false 3 load address of "FALSE"

TUTORIAL

string1
string?2

false

lengthl

endif
else

ldx #false
endif
jst display
jsr putnl_
swi

rmb 41

rmb 41

fcc "TRUE"
fcb O

fcc "FALSE"
fcb 0

rmb 2

5 endif

; else

; load address of "FALSE"
; endif

; display "TRUE" or "FALSE"
; skip to a new line

65

end

Notes:

Given the address of a string in accumulator D, length_ returns the number
of characters in the string. The result is returned in accumulator D.

equal_ compares 'n’ characters of memory for equality. Before equal_ is
called, 'n’ must be pushed on the stack followed by the address of one string
with the address of the other string being placed in accumulator D.

If the first 'n’ characters of the two strings are equivalent, equal_ returns a
non-zero value in accumulator D; otherwise, zero is returned.

In the above program, the two strings are checked for exact equality. If their
lengths are not equal, it is assumed that the strings are not equal. If the
Iengths are equal, equal_ is called.

- If the two strings are equal then the word "TRUE" is displayed on the screen
using the display subroutine.

- If the two strings are not equal then the word "FALSE" is displayed.

The program illustrates how control constructs can be nested. One
if/else/endif construct is nested within another.

66 Chapter 1
EXAMPLE 22

The following program uses a subroutine called bdisplay to display a binary
integer on the screen.

Creating The Program

ex22m.asm

;example 22 mainline routine

xref initstd_ ; references to

xref putnl_ ; System routines

xref bdisplay ; reference to user routine
1ds #S$0fff ; initialize S pointer

jsr initstd_ ; initialize standard I/O
Idb number ; load 25 into B

jsr bdisplay ; display 25 in binary

jsr putnl_ ; skip to a new line

swi

number fcb 25
end

Notes:

1. The number 25 is loaded into accumulator B and then bdisplay is called to
display 25 as a binary number on the screen.

- The number displayed will be 00011001.

- bdisplay will only work for numbers which can be represented in 8 bits.

TUTORIAL 67
ex22sb.asm
;example 22 subroutine bdisplay
xdef bdisplay ; definition for external use
xref display ; reference to user routine
bdisplay 1da #8 ; load 8 into A
loop ; loop
aslb s shift B left
ifcc ; If carry clear
1dx#char0 ; load address of "0"
else 5 else
1dx #charl ; load address of "1”
endif ; endif
pshsd ; saveD
jsrdisplay ; display "0" or "1”
pulsd 3 restore D
deca ; decrement A by 1
quifeq 5 quit if A equals O
endloop ; endloop
Its
char0 fce "0”
fcb 0
charl fcc "1”
fcb 0
end
Notes:
1. 8 bits are to be displayed and so the loop must be executed 8 times. The

number 8 is loaded into accumulator A and every time the loop is completed,
1 is subtracted from accumulator A. When accumulator A contains 0, the
loop ends.

2, Accumulator B contains the number to be displayed. At the beginning of the
loop, an arithmetic shift left is performed on accumulator B. This will shift
the leftmost bit of the B accumulator into the carry bit.

- If the carry flag is set then a 1 was shifted into the carry bit and so the

character

"1"

is displayed on the screen.

68

Chapter 1

- If the carry flag is clear then a 0 was shifted into the carry bit and so the
character "0” is displayed on the screen.

TUTORIAL 69
EXAMPLE 23

The following program uses a subroutine called hdisplay to display an integer on
the screen in hexadecimal.

Creating The Program

ex23m.asm

;example 23 mainline routine

xref initstd_ ; references to

xref putnl_ ; system routines

xref hdisplay ; reference to user routine
Ids #$0fff ; initialize S pointer

jsr initstd_ ; initialize standard 1/O

1db number ; load 25 into B

jst hdisplay ; display 25 in hexadecimal
jsr putnl_ ; skip to a new line

swi

number fcb 25
end

Notes:

1. The number 25 is loaded into accumulator B and then hdisplay is called to
display 25 as a hexadecimal number on the screen.

- The number displayed will be 19.

- hdisplay will only work for numbers which can be represented in 8 bits.

70 Chapter 1
ex23sh.asm
;example 23 subroutine hdisplay
xdef hdisplay ; definition for external use
xref putchar_ ; reference to system routine
hdisplay clra ; clear A
pshs d ; save D
Isrb ; shift B right 4 times
Isrb ; in order to have D
Isrb ; contain value of
Istb ; first hexadecimal digit
tfr d,x ; transfer D to X
Idb hchars,x ; load hex digit into B
jsr putchar_ ; display first hex char
puls d ; restore D
andb #$0f ; value of 2nd hex digit
tfr d,x ; transfer D to X
1db hchars,x ; load hex digit into B
jsr putchar_ ; display second hex char
Its
hchars fcc "0123456789ABCDEF’
end
Notes:
1. The value to be displayed is in accumulator B when hdisplay is called.

- Accumulator A is cleared so that accumulator D is equivalent to
accumulator B.

- Accumulator D is pushed on the stack to save it.

- Accumulator B is logically right shifted four times so that accumulator D
contains a number between 0 and 15 which is to be represented as the first of

two hexadecimal digits.

2. Accumulator D is transferred to index register X. The contents of index
register X act as an offset from hchars so that the appropriate hexadecimal
character is loaded into accumulator B.

TUTORIAL 71

- putchar_ is called to display the character on the screen.

3. The value of accumulator D saved on the stack earlier is restored.
- Accumulator B is logically ANDed with $OF so that accumulator D
contains a number between 0 and 15 which is to be represented as the second
hexadecimal digit.

4. Accumulator D is transferred to index register X. The contents of index
register X act as an offset from hchars so that the appropriate hexadecimal

character is loaded into accumulator B.

- putchar_ is called to display the second character on the screen.

72

EXAMPLE 24

Chapter 1

The following program demonstrates how to use the system routine printf_ which
is a facility to provide formatted output to the screen.

Creating The Program

ex24m.asm

;example 24 mainline routine

string1

string2

string3

charl

xref initstd_.
xref printf_

jsr initstd_
Idb charl
pshs d

1dd #stringl
jsr printf_
ldd number
pshs d

1dd #string2
jsr printf_
ldd #string
pshs d

ldd number
pshs d

Idd #string3
jsr printf_
swi

; references to
; system routines

; initialize standard 1/O

; load 'a’ into B

; push 'a’ onto S

; load address1

; display string1 formatted
; load 25 into D

; push 25 onto S

; load address2

; display string2 formatted
; load address

; push address onto S

; load 25 into D

; push 25 onto S

; load address3

; display string3 formatted

fcc "printf_ can be used to display characters”

fcc ” such as %c.%n"

fcb 0

fcc "it can also be used to display decimal ”
fcc "numbers such as %d.%n"

fcb 0

fce "or hexadecimal numbers such as %h or ”
fce “strings such as %s.%n"

fcb 0
fcb 'a

; substitution value for %c in stringl

TUTORIAL 73

Notes:

string fcc "' This is a string.

number fdb 25 ; substitution value for %d in string2

; and %h in string3
; substitution value
; for %s in string3

"

fcb 0
end

For printf_, a string to be displayed is to be specified. This string may
contain the following escape characters for special formatting:

%n - insert the new line character
%c - insert a character

%A - insert a decimal number

%h - insert a hexadecimal number
%s - insert a string

Up to 6 substitution values may be specified, not counting new line
characters which do not need to be specified.

- The substitution value for %c is a character.

- The substitution values for %d and %h are a decimal number one word in
length and a hexadecimal number one byte in length respectively.

- The substitution value for %s is the address of a string.

The substitution values are to be pushed onto the stack with the last
substitution value being pushed on first.

The address of the string to be displayed is to be placed in accumulator D.

- Then, printf_ may be called.

74 Chapter 1
EXAMPLE 25
The following program demonstrates how to use macros. The macro “prints”

displays a string on the screen, preceded by forty blank spaces if accumulator B
contains 'r’.

Creating The Program

ex25m.asm

; example 25 mainline routine

xref initstd_ ; references to
xref putchar_ ; system routines
xref putnl .
xref itos_
xref display ; reference to user routine
prints macr
cmpb #'r ; compare B to 'r’
if eq ; if B equals ‘1’
Idy #40 ; load Y with 40
pshsx ; save X
loop 3 loop
1db#’ ; load ’ ' into B
pshsy 5 save Y
jsrputchar_ 5 display blank
pulsy 5 restore Y
leay-1,y 5 decrement Y by 1
untileq 5 quit if Y equals O
pulsx ; restore X
endif ; endif
jsr display ; display string
endm ; end of macro "prints”
jsr initstd_ ; initialize standard 1/O
jsr putnl_ ; skip to a new line
Idx #leftstr ; load address of leftstr
Idb #'1 ; on left side
prints ; display "ODD"

ldx #rightstr ; load address of rightstr

TUTORIAL 75

Notes:

ldb #'r ; on right side
prints ; display "EVEN"
jsr putnl_ ; skip to a new line
swi

leftstr fcc "ODD”

fcb O

rightstr fcb 8

fcb 8

fcb 8

fcc "EVEN”
fcb 0

end

This program leaves a blank line, displays the heading "ODD" ... EVEN"
with "ODD" beginning at the left side of the screen and "EVEN" beginning in
the middle of the screen.

prints is a macro which displays a string whose address is in index register
X. If accumulator B contains the character 'r’, the string is preceded by 40
blank characters.

- A macro begins with a label which is the macro name followed by the
assembler directive ‘macr’. In this case, the macro name is 'prints’.

- A macro ends with the assembler directive ‘endm’.

- A macro is called by using the macro name as an instruction. Wherever the
macro is called, the assembler replaces the macro call with the body of the
macro. Thus, the body of the macro occurs only once in the assembly
language source code but, in the object code, it occurs as many times as the
macro is called.

- A macro name must not be the same as an assembly instruction or
assembler directive. If it is, the macro will be ignored.

The heading is created by displaying "ODD”, displaying 40 blanks,
displaying 3 backspaces, and displaying "EVEN".

76

- $08 is a backspace in ASCII.

Assembling The Program

Chapter 1

ex25m.Ist
0000 ;example 25
0000 xref initstd_
0000 xref putchar_
0000 xref putnl_
0000 xref itos_
0000 xref display
0000
0000 prints macr
0000 cmpb #'r
0000 if eq
0000 Idy #40
0000 pshs x
0000 loop
0000 1db #'
0000 pshs y
0000 jsr putchar_
0000 puls y
0000 leay -1,y
0000 until eq
0000 puls x
0000 endif
0000 jsr display
0000 endm
0000
0000 BD 00 00 jsr initstd_
0003 BD 060 00 jsr putnl_
0006 SE 00 BA ldx #leftstr
0009 C6 6C Idb #'l
000B prints
000B C1 72 + cmpb #'r
000D 26 15 + if eq
000F 10 8E 00 28 + ldy #40
0013 34 10 + pshs x

TUTORIAL

0015
0015 C6
0017 34
0019 BD
001C 35
001E 31
0020 26
0022 35
0024
0024 BD
0027 8E
002A C6
002C
002C C1
002E 26
0030 10
0034 34
0036
0036 C6
0038 34
003A BD
003D 35
003F 31
0041 26
0043 35
0045
0045 BD
0048 BD
004B 3F
004B
004C 4F
004F 00
0050 08
0051 08
0052 08
0053 45
0057 00
0058
0058

20
20
00
20
3F
F3
10

72

72
15
8E
10

20
20
00
20

3F
F3
10

00
00

56

88

45 4E

A+

R R R ks

leftstr

rightstr

77

loop
1db #’
pshs y
jsr putchar_
puls y
leay -1,y
until eq
puls x
endif
jsr display
Idx #rightstr
1db #'r
prints
cmpb #'r
if eq
Idy #40
pshs x
loop
1db #'
pshs y
jsr putchar_
puls y
leay -1,y
until eq
puls x
endif
jsr display
jsr putnl_
swi

fcc "ODD”
fcb 0

fcb 8

fcb 8

fcb 8

fcc "EVEN"
fcb 0

end

78

Notes:

Chapter 1

The macro definition does not generate any object code.

The macro calls are all replaced by the body of the macro and object code for
the macro body is generated each time there is a macro call.

- In this case, the macro ’prints’ is called two times. The insertion of a macro
body is indicated by plus signs.

TUTORIAL 79

EXAMPLE 26
The following program provides an example of conditional assembly directives.

The program assembles one set of instructions for an eighty-column screen

microcomputer and a different set of instructions for a forty-column screen
microcomputer. (The user is responsible for which set of instructions is assembled.)

Creating The Program

ex26m.asm

; example 26 mainline routine
screen equ 80

xref initstd_ ; references to
xref putchar_ ; system routines
xref putnl_
xref itos—
xref display ; reference to user routine
prints macr
cmpb #'r ; compare B to 'r’
if eq ; if B equals '’
ifeq%0-80 ; if %0 equals 80
1dy #40 ; load Y with 40
endc ; end of cond. if
ifeq%0-40 3 if %0 equals 40
1dy #20 ; load Y with 20
endc ; end of cond. if
pshsx ; save X
loop ; loop
Idb#’ 3 load ' ' into B
pshsy H save Y
jsrputchar_ 3 display blank
pulsy 5 restore Y
leay-1,y 5 decrement Y by 1
untileq 5 quit if Y equals O
pulsx ; restore X
endif ; endif
jsr display ; display string

endm ; end of macro “prints”

80

Notes:

scr80
scr40
leftstr

rightstr

jsr initstd_

; initialize standard I/O

jsr putnl_ ; skip to a new line
ifeq (screen - 80) ; if screen equals 80

Idx #scr80 ; load address of scr80
endc ; end of cond. if
ifeq (screen - 40) ; if screen equals 40

ldx #scr40 ; load address of scr40
endc ; end of cond. if
Idb #'1 ; on left side
prints screen ; display scr80 or scr40
jsr putnl_ ; skip to a new line
jsr putnl_ ; skip to a new line
Idx #lefistr ; load address of leftstr
Idb #'1 ; on left side

prints screen
Idx #rightstr
Idb #'r
prints screen
jsr putnl_
swi

; display "ODD"

; load address of rightstr
; on right side

; display "EVEN"

; skip to a new line

fcc "This is an 80-column machine.”

fcb 0

fcc "This is a 40-column machine.”

fcb O

fcc "ODD”
fcb O

fcb 8

fcb 8

fcb 8

fcc "EVEN"
fcb 0

end

Chapter 1

This program is the same as that in Example 25 with a few small additions.

- Since screens on some microcomputers are only forty columns wide instead
of eighty, this program allows for that by using conditional assembler
directives.

TUTORIAL 81

2. The prints macro displays a string either beginning at the extreme left of the
screen or beginning at the middle.

- The middle of an 80-column screen will be column 41 while the middle of a
40-column screen will be column 21.

- Thus, in prints, index register Y should be loaded with 40 if the screen has
80 columns or with 20 if the screen has 40 columns.

This program is set up for an 80-column screen.

- In the first line of the program, the parameter "screen” is equated (by EQU)
to the number 80 in order to indicate an 80-column screen. The statement
"screen equ 40" would change the value of "screen” and indicate a 40-column
screen.

4. The program uses the conditional assembler directive ifeq both in the macro
and in the main body of the program.

5. In the main body of the program, the statements "ifeq (screen - 80)" and "ifeq
(screen - 40)" are used to test the value of screen. If the expression "(screen -
80)" is equal to zero at assembly time then the statement "ldx #scr80" is
assembled. If the expression "(screen - 40)" is equal to zero at assembly time
then the statement "ldx #scr40" is assembled.

6. In the macro, the assember directive "ifeq” is used in the statements "ifeq
%0-80" and "ifeq %0-40". The notation "%0" stands for the first argument of
the macro. In this program, the first and only argument is "screen”. Macros
may have many arguments with the notation "%n" indicating the (n+1)st
argument.

NOTE: The '%' is a backslash on the keyboard.

7. The conditional assembler directives available are IFEQ, IFGE, IFGT,
IFLE, IFLT, IFNE, IFC, and IFNC.

These directives are explained in the section on assembler directives.

Waterloo 6809 Assembler

Reference Manual

Waterloo Computing Systems Newsletter

The software described in this manual was implemented by Waterloo Computing
Systems Limited. From time-to-time enhancements to this system or completely new
systems will become available.

A newsletter is published periodically to inform users of recent developments in
Waterloo software. This publication is the most direct means of communicating
up-to-date information to the various user. Details regarding subscriptions to this
newsletter may be obtained by writing:

Waterloo Computing Systems Newsletter
Box 943,

Waterloo, Ontario, Canada

N2J 4C3

85

Chapter 2

EDITOR

The purpose of the text editor, the Waterloo microEDITOR, is to create and
maintain program files and source data files. While it is a line-oriented editor, it does
have full-screen support. The usual commands for performing such tasks as adding,
deleting, and changing text are available and, as well, special program function (PF)
keys are provided. These keys can be pressed instead of entering some of the more
frequently used commands. Other features include the ability to make global changes
and the facility to repeat and edit the last command issued. (See the Waterloo
microEDITOR manual for further explanation.)

86

87

Chapter 3

ASSEMBLER

The Waterloo 6809 Assembler will assemble normal Motorola 6809 assembly
language syntax and directives along with macros, pseudo opcodes for structured
programming control, and long label names. Definitions from separate files may also
be included. The assembler produces object modules which can then be linked into
executable load modules.

Method of Operation

The filename of each assembly language program to be assembled must be
suffixed by '.asm’.

In order to assemble the program, enter 'a’ when selecting from the menu.

38 Chapter 3

When asked to ‘Enter filename:’, enter the name of the assembly languag e
program file without including the '.asm’ suffix. The suffix is assumed and, if it is
included accidentally, the assembler will try to assemble a file with a ".asm.asm’
suffix.

The program will then be assembled. The 'Assembler completed’ message
indicates the end of the assembly. Pressing 'RETURN’ will cause a return to the
menu.

Files Produced By The Assembler

The assembler produces two new files with names identical to the assembly
language program filename except for the suffixes.

The ’.1Ist’ file contains a copy of the original program with its machine language
translation displayed beside it on the left hand side. This file could be useful in
debugging. If any errors occur in the assembly process, they will be marked by
appropriate messages in the comresponding ’.Ist’ file. The message before the
'Assembler completed’ line will indicate how many diagnostics messages have
occurred.

The ’.b09’ file contains the object code created by assembling the source code.
Provided that there were no assembly errors, this object module can now be linked by
the linker into a load module. At this point, the origin of the object code is at zero.
The linker is responsible for its relocationto an absolute address.

Notes

89

90

91

Chapter 4

6809 ARCHITECTURE & INSTRUCTIONS

Registers

Both registers and memory need to be addressed. The available registers are:
accumulator A (A), accumulator B (B), accumulator D (D), index register X (X),
index register Y (Y), the hardware system stack pointer (S), the user stack pointer
(U), the program counter (PC), the direct page register (DP), and the condition code
register (CC).

1. Accumulators (A, B, and D)

Accumulators A and B are general-purpose 8-bit accumulators which are used for
arithmetic calculations and manipulation of data. Accumulator D is a 16-bit double
accumulator which consists of accumulator A and accumulator B concatenated
together with the A register as the most significant byte.

92 Chapter 4

2. Index Registers (X and Y)

Index registers X and Y are used in indexed addressing mode (to be discussed
later). The 16-bit address in an index register is added to an optional offset to provide
the instruction’s effective address. During some indexed mode operations, the
contents of the index register may be automatically post-incremented or
pre-decremented.

3. Stack Pointers (S and U)

The hardware system stack pointer (S) is used automatically by the processor
during subroutine calls and interrupts. The user stack pointer (U) is controlled
exclusively by the programmer. This allows arguments to be passed to and from
subroutines easily. The stack pointers point to the last used byte on the stack. S and U
may be used as index registers while also supporting ‘push’ and ‘pull’ instructions.

4. Program Counter (PC)

The program counter is used by the processor to point to the address of the next
instructionto be executed. With relative addressing, it is also used as an index
register.

5. Direct Page Register (DP)

The direct page register forms the most significant byte of an instruction’s
effective address when direct addressing is being used. It is concatenated with the
byte following the direct mode opcode.

6. Condition Code Register (CO)

The condition code register defines the current state of the processor flags. The
bits in the condition code register are: the carry flag (C), the overflow flag (V), the
zero flag (Z), the negative flag (N), the interrupt request mask flag (I), the half-carry
flag (H), the fast interrupt request mask flag (F), and the entire state saved on stack
flag (E).

The bits are numbered from right to left (7-6-5-4-3-2-1-0).

6809 ARCHITECTURE & INSTRUCTIONS 93

Carry (C-bit0)
The carry flag is usually the carry from the binary arithmetic operation. C is also used
to represent a 'borrow’ in instructions involving subtractions such as CMP and is the
complement of the carry.

Overflow (V - bit 1)
The overflow flag is set to a one by an operation which causes a signed two's
complement arithmetic overflow.

Zero (Z -bit2)
The zero flag is set to a one by an operation whose result is exactly zero.

Negative (N - bit 3)
The negative flag contains the value of the most significant bit of the preceding
operations’s result.

Interrupt Request Mask (I-bit 4)
The interrupt request mask flag is set to a one when the processor is to be prevented
from recognizing interrupts from the interrupt request line.

Half-Carry (H - bit5)
The half-carry flag is used to indicate a carry from bit 3 as a result of an 8-bit
addition.

Fast Interrupt Request Mask (F - bit 6)
The fast interrupt request mask flag is set to a one when the processor is to be
prevented from recognizing interrupts from the fast interrupt request line.

Entire State Saved On Stack (E-Dbit7)
The entire state saved on stack flag is set to a one to indicate that the complete
machine state (all the registers) was stacked and not just the program counter and
condition code register.

94 Chapter 4

Addressing Modes

1. Inherent

In inherent addressing, the opcode of the instruction contains all the address
information necessary and there are no addressing options.

Ex: MUL ; Multiply A by B and store in D.

2. Accumulator

Accumulator addressing mode involves those instructions which operate on an
accumulator.

Ex: CLRA ; Clear accumulator A.
CLRB ; Clear accumulator B.

3. Immediate

In immediate addressing, the data to be used in the instruction immediately
follows the instruction’s opcode so that the effective address of the data is the location
following the opcode. There are both 8-bit and 16-bit immediate values depending on
the size of argument specified by the opcode. Immediate values are known at
assembly time.

Ex: LDX #CR ; Load address of CR into X.
LDB #7 ; Load number 7 into B.
LDA #S$F0 ; Load hexadecimal number FO into A.
LDB #%11110000 ; Load binary number 11110000 into B.
LDX #$8004 ; Load hexadecimal number 8004 into X.

Note: # signifies immediate addressing; $ signifies a hexadecimal value; and %
signifies a binary value.

6809 ARCHITECTURE & INSTRUCTIONS 95

4. Absolute (Immediate Indirect)

Absolute addressing refers to an exact 16-bit location in the memory addressing
space and is especially useful for I/O transactions with peripherals. Another name for
absolute addressing is immediate indirect addressing. There are three

program-selectable modes of absolute addressing: direct, extended, and extended
indirect.

- (a) Direct

With direct addressing, one byte of address follows the opcode. This byte
specifies the lower 8 bits of the effective address. The upper 8 bits are supplied by the
direct page register. Only 256 locations (one 'page’ of memory) can be accessed
without redefining the direct page register. The direct page register is set to $00 and
page 00 is normally the only page for which direct addressing is used. By loading a
register, such as accumulator A, with a value and then transferring that value to the
direct page register, the direct page register may be reset. Caution is recommended
with this procedure, however, since the system library routines will not work properly
if the direct page register does not contain zero. Direct addressing is specified by
specifying a one-byte address in the instruction. Since only one byte of address is
required in direct addressing, this mode requires less memory and executes faster than
other absolute or indexed modes. Note that indirection is not allowed with direct
addressing.

Ex:

XX EQU $40
LDB $30 ; Load contents of $0030 into B.
LDA #XX ; Load A with $40.
TFR A,DP ; Reset DP to $40.
LDB $10 ; Load contents of $4010 into B.
CLRA ; Load A with $00.
TFR A,DP ; Restore DP to $00.

- (b) Extended

In extended addressing, the contents of the two bytes immediately following the
opcode fully specify the 16-bit effective address used by the instruction.

96 Chapter 4

Ex: STX MOUSE ;StoreXintolocationsMOUSE&MOUSE+1.
LDD $2000 ; Load contents of $2000 & $2001 into D.

- (c¢) Extended Indirect

In extended indirect addressing, the contents of the two bytes immediately
following the opcode specify a 16-bit absolute address from which to recover the
effective address to be used by the instruction.

Ex: LDA [CAT] ; Effective address is address contained
;inCAT& CAT+1. Loadcontentsinto A.
LDX [$FFFE] ; Effective address is address contained

;in$FFFE & $FFFF. LoadcontentsintoX.

Certain instructions (SWI, SWI2, SWI3) and the interrupts use an inherent
absolute address to function similarly to extended indirect addressing mode and are
said to have 'absolute indirect’ addressing.

5. Register

Register addressing involves those instructions which operate on the various
registers available.

Ex: TFR X,Y ; Transfer contents of X into Y.
PSHS A,B,X,Y ; Push A, B, X, and Y onto S stack.

6. Indexed (Register Indirect)

In all indexed addressing, one of the pointer registers (X, Y, U, S, and sometimes
PC) is used in a calculationto obtain the effective address of the instruction’s operand.
Various types of indexing are available: constant-offset indexed, constant-offset
indexed indirect, accumulator indexed, accumulator indexed indirect,
auto-increment, auto-increment indirect, auto-decrement, and auto-decrement
indirect.

6809 ARCHITECTURE & INSTRUCTIONS 97

- (a) Constant-Offset Indexed

In constant-offset indexed addressing, an optional two's complement offset (up to
16 bits long) is added to the contents of a register to form the effective address of the
instruction’s operand. (In zero-offset indexed mode, the offset either is left out
entirely or is zero. This mode is the fastest indexing mode since the selected pointer
register contains the address of the data to be used and no addition needs to be done]

Ex: LDA ,X ; Effective address is address in X.

; Load contents into A.

LDB 0,Y ; Effective address is address in Y.
; Load contents into B.

LDX 4,8 ; Effective address is 4 plus contents
; of S. Load contents into X.

LDY -4,U ; Effective address is -4 plus contents
; of U. Load contents into Y.

LDA 17,PC ; Effective address is 17 plus contents
; of PC. Load contents into A.

LDA THERE,PC ; Effective address is formed by adding

; a constant, which is the difference
; between the PC and the address THERE,
; to the PC. Load contents into A.

- (b) Constant-Offset Indexed Indirect

As with all indirect addressing, constant-offset indexed indirect addressing
functions in two stages. First, an indexed address is formed by temporarily adding the
offset-value to the contents of the selected register. Second, this address is used as a
pointer to the instruction’s effective address.

98 Chapter 4

Ex: LDB [0,Y] ; Effective address is contents of

; address pointed to by address in Y.
; Load contents into B.

LDY [-4,U] ; Effective address is contents of
; address pointed to by -4 plus contents
; of U. Load contents into Y.

LDA [THE,PC] ; Effective address is contents of the
; address pointed to by the addition of
; the difference between the address of
; THE and the contents of the PC to the
; PC. Load contents into A.

~ (c¢) Accumulator Indexed

In accumulator indexed addressing, the contents of an accumulator (A, B, or D) is
added to the contents of a register to form the effective address of the instruction’s
operand.

Ex: LDA B,Y ; Effective address is formed by adding the

; contents of B to the contents of Y.
; Load contents into A.

LDX D,Y ; Effective address is formed by adding the
; contents of D to the contents of Y.
; Load contents into X.

LEAX B,X ; Effective address is formed by adding
; the contents of B to the contents of X.
; Load effective address into X.

- (d) Accumulator Indexed Indirect

Like all indirects, accumulator indexed indirect addressing functions in two
stages. First, an indexed address is formed by temporarily adding the contents of the
selected accumulator to the contents of the selected register. Second, this address is
used as a pointer to the instruction’s effective address.

6809 ARCHITECTURE & INSTRUCTIONS 99

Ex: LDA [B,Y] ; Effective address is contents of address
;pointed toby address formed by adding the
; contents of B to the contents of Y.
; Load contents into A.

LEAX [B,X] ; Effective address is contents of address

;pointed toby address formed by adding the
; contents of B to the contents of X.
; Load effective address into X.

- (e) Auto-Increment

Auto-increment addressing uses the value in the selected pointer register (X, Y,
S, or U) to address a one- or two-byte value in memory. The register is then
incremented by one (single +) or two (two +'s). No offset is permitted.

Ex: LDA X+ ; Effective address is address in X.
;LoadcontentsintoA. IncrementXbyone.

LDY ,Y++ ; Effective address is address in Y.
;LoadcontentsintoY. IncrementYbytwo.

LDB ,S+ ; Effective address is address in S.
; Load contents into B. Increment S by 1.

LDX ,U++ ; Effective address is address in U.

;LoadcontentsintoX. IncrementUbytwo.

- (f) Auto-Increment Indirect

Auto-increment indirect addressing uses the value in the selected register (X, Y,
S, or U) to point to an address value in memory. This value is used as the instruction’s
effective address. The register is then incremented by two (two ++'s). The
indirected increment by one is not permitted and neither are offsets.

100

Chapter 4

Ex: LDY [,Y++]

LDB [,S++]

; Effective address is contents of address
; pointed to by address in Y. Load

; contents into Y. Increment Y by 2.

; Effective address is contents of address
; pointed to by address in S. Load

; contents into B. Increment S by two.

- (g) Auto-Decrement

Auto-decrement addressing first decrements the selected register (X, Y, S, or U)
by one (single -) or two (two -’s). The resulting value in the register is then used as the
instruction’s effective address. No offset is permitted.

Ex: LDA ,-X
LDY ,--Y
LDB ,-U

LDX ,--S

; Decrement X by one. Effective addressis
; address in X. Load contents into A.
;Decrement Y by two. Effectiveaddressis
; address in Y. Load contents into Y.

; Decrement U by one. Effective address is
; address in U. Load contents into B.

; Decrement S by two. Effective addressis
; address in S. Load contents into X.

- (h) Auto-Decrement Indirect

Auto-decrement indirect addressing first decrements the selected register by two
(two -'s). The resulting value in the register is then used as a pointer to an address
value in memory. This value is used as the instruction’s effective address.
Auto-decrement by one indirect is not permitted and neither are offsets.

Ex: LDY [,--Y]

LDB [,--U]

; Decrement Y by 2. Effective address is
; contents of address pointed to by address
;in Y. Load contents into Y.
; Decrement U by 2. Effective address is
; contents of address pointed to by address
; in U. Load contents into B.

6809 ARCHITECTURE & INSTRUCTIONS 101

7. Relative

Relative addressing, also known as short relative addressing, adds the value of the
immediate byte of the instruction (an 8-bit two’'s complement value) to the program
counter to produce a new absolute address in the program counter. This addressing
mode is always position independent. Only part of memory can be reached with
(short) relative addressing.

Ex: BEQ CAR ; If Z bit is set then branch to CAR.
BRA BAT ; Branch unconditionally to BAT.
CAR ...
BAT ...

8. Long Relative

Long relative addressing adds the value of the two immediate bytes of the
instruction (a 16-bit two's complement value) to the program counter to produce a
new absolute address in the prgram counter. This addressing mode is always position
independent. All of memory can be reached with long relative addressing.

Ex: LBNE RAT ; If Z bit is clear then long branch to RAT.
LBRA CAT ; Long branch unconditionally to CAT.

RAT ...
CAT ..

102 Chapter 4

Assembly Language Instructions

ABX - add accumulator B (unsigned) to index register X

Description: ABX
The 8-bit unsigned value in accumulator B is added to the 16-bit value in index
register X and the sum is stored in index register X.

ADC - add carry bit and memory byte to accumulator A or B

Description: ADCA P (or ADCB P)
The contents of the carry flag and the 8-bit value addressed by P are added to
the 8-bit value in accumulator A (or B) and the sum is stored in accumulator A
(or B).

Address Modes for P: immediate, direct, indexed, extended

Condition Codes:
H - Set IFF there is a carry from bit 3.
N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of the result are clear.
V - Set IFF 8-bit two's complement overflow.
C - Set IFF there is a carry from bit 7.

6809 ARCHITECTURE & INSTRUCTIONS 103

ADD - add memory byte to accumulator A or B

Description: ADDA P (or ADDB P)
The contents of the 8-bit value addressed by P are added to the 8-bit value in
accumulator A (or B) and the sum is stored in accumulator A (or B).

Address Modes for P: immediate, direct, indexed, extended

Condition Codes:
H - Set IFF there is a carry from bit 3.
N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of the result are clear.
V - Set IFF 8-bit two's complement overflow.
C - Set IFF there is a carry from bit 7.

ADD - add 16 bits of memory to accumulator D

Description: ADDD P
The contents of the 16-bit value addressed by P is added to the 16-bit value in
accumulator D and the sum is stored in accumulator D.

Address Modes for P: immediate, direct, indexed, extended

Condition Codes:
N - Set IFF bit 15 of the result is set.
Z - Set IFF all bits of the result are clear.
V - Set IFF there is a 16-bit two's complement overflow.
C - Set IFF there is a carry from bit 7 when the
most significant byte (MS Byte) is operated on.

104 Chapter 4

AND - logical and memory byte to accumulator A or B

Description: ANDA P (or ANDB P)
Each bit of the 8-bit value addressed by P is logically anded with the
corresponding bit of the 8-bit value in accumulator A (or B) and the result is
stored in accumulator A (or B).

Address Modes for P: immediate, direct, indexed, extended

Condition Codes:
N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of the result are clear.
V - Cleared.

AND - logical and memory immediate byte to CC register.

Description: ANDCC #XX
The contents of the 8-bit immediate value are logically anded with the 8-bit
value in the condition code register and the result is stored in the condition code
register.

Condition Codes:
The condition codes will be cleared or set depending on the result stored in the
condition code register.

6809 ARCHITECTURE & INSTRUCTIONS 105

ASL - arithmetic shift left accumulator or memory

Description: ASLA, ASLB; ASL P
All bits of the 8-bit operand are shifted one place to the left. Bit O is loaded with
a zero. Bit 7 is shifted into the carry flag.

Address Modes for P: direct, indexed, extended

Condition Codes:

H - Undefined.

N - Set IFF bit 7 of the result is set.

Z - Set IFF all bits of the result are clear.

V - Set IFF one and only one of bits 6 and 7 of the
original operand is set; otherwise cleared.

C - Set IFF bit 7 of the original operand is set;
otherwise cleared.

ASR - arithmetic shift right accumulator or memory

Description: ASRA, ASRB; ASR P
All bits of the 8-bit operand are shifted one place to the right. Bit 7 is held
constant. Bit 0 is shifted into the carry flag.

Address Modes for P: direct, indexed, extended

Condition Codes:
H - Undefined.
N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of the result are clear.
C - Set IFF bit O of the original operand is set;
otherwise cleared.

106 Chapter 4

BCC - branch on carry clear

Description: BCC dd; LBCC DDDD

If the carry flag (C bit) is set then a branch does not occur. If the carry flag is
clear then a branch does occur. dd and DDDD are memory immediate values.
dd is an 8-bit offset and DDDD is a 16-bit offset. LBCC DDDD indicates a
long branch on carry clear which uses long relative effective addressing and
BCC dd indicates a short branch which uses relative effective addressing. A
branch is accomplished by adding the memory immediate value to the contents
of the program counter and storing the sum in the program counter. (A branch
to a label is equivalent to a branch to an offset as the offset to the label is
calculated by the assembler.)

BCS - branch on carry set

Description: BCS dd; LBCS DDDD

If the carry flag (C bit) is clear then a branch does not occur. If the carry flag is
set then a branch does occur. dd and DDDD are memory immediate values. dd
is an 8-bit offset and DDDD is a 16-bit offset. LBCC DDDD indicates a long
branch on carry set which uses long relative effective addressing and BCC dd
indicates a short branch which uses relative effective addressing. A branch is
accomplished by adding the memory immediate value to the contents of the
program counter and storing the sum in the program counter. (A branch to a
label is equivalent to a branch to an offset as the offset to the label is calculated
by the assembler.)

6809 ARCHITECTURE & INSTRUCTIONS 107

BGE - branch on greater than or equal to zero

Description: BGE dd; LBGE DDDD

A branch does not occur unless both the negative flag (N bit) and the overflow
flag (V bit) are set or both the negative and overflow flags are clear. Having
both flags clear means that the value of a valid two’s complement result is
greater than or equal to zero. Having both flags set means that an overflow
occurred but, if it hadn’t the value of the two’s complement result would be
greater than or equal to zero. dd and DDDD are memory immediate values. dd
is an 8-bit offset and DDDD is a 16-bit offset. LBGE DDDD indicates a long
branch on greater than or equal to zero which uses long relative effective
addressing and BGE dd indicates a short branch which uses relative effective
addressing. A branch is accomplished by adding the memory immediate value
to the contents of the program counter and storing the sum in the program
counter. (A branch to a label is equivalent to a branch to an offset as the offset
to the label is calculated by the assembler.)

BGT - branch on greater than zero

Description: BGT dd; LBGT DDDD

A branch does not occur unless (a) both the negative flag (N bit) and the
overflow flag (V bit) are set or both the negative and overflow flags are clear
and (b) the zero flag (Z bit) is clear. Having both the negative and overflow
flags clear means that the value of a valid two’s complement result is greater
than or equal to zero. Having both the negative and overflow flags set means
that an overflow occurred but, if it hadn’t, the value of the two’s complement
result would be greater than or equal to zero. Having the zero flag clear means
that the value of the two's complement result is non-zero. Thus, a branch
occurs if the value of the two's complement result is greater than zero. dd and
DDDD are memory immediate values. dd is an 8-bit offset and DDDD is a
16-bit offset. LBGT DDDD indicates a long branch on greater than zero which
uses long relative effective addressing and BGT dd indicates a short branch
which uses relative effective addressing. A branch is accomplished by adding
the memory immediate value to the contents of the program counter and storing
the sum in the program counter. (A branch to a label is equivalent to a branch to
an offset as the offset to the label is calculated by the assembler.)

108 Chapter 4

BHI - branch on higher

Description: BHI dd; LBHI DDDD

A branch does not occur unless both the carry flag (C bit) and the zero flag (Z
bit) are clear. The 'branch on higher’ instruction is the same as the 'branch on
greater than zero’ except that it compares unsigned values and 'branch on
greater than zero’ compares signed values. dd and DDDD are memory
immediate values. dd is an 8-bit offset and DDDD is a 16-bit offset. LBHI
DDDD indicates a long branch on higher which uses long relative effective
addressing and BHI dd indicates a short branch which uses relative effective
addressing. A branch is accomplished by adding the memory immediate value
to the contents of the program counter and storing the sum in the program
counter. (A branch to a label is equivalent to a branch to an offset as the offset
to the label is calculated by the assembler.)

BHS - branch on higher or same

Description: BHS dd; LBHS DDDD

A branch does not occur unless the carry flag (C bit) is clear. The 'branch on
higher or same’ instruction is the same as the "branch on greater than or equal
to zero’ except that it compares unsigned values and 'branch on greater than or
equal to zero’ compares signed values. dd and DDDD are memory immediate
values. dd is an 8-bit offset and DDDD is a 16-bit offset. LBHS DDDD
indicates a long branch on higher or same which uses long relative effective
addressing and BHS dd indicates a short branch which uses relative effective
addressing. A branch is accomplished by adding the memory immediate value
to the contents of the program counter and storing the sum in the program
counter. (A branch to a label is equivalent to a branch to an offset as the offset
to the label is calculated by the assembler.)

6809 ARCHITECTURE & INSTRUCTIONS 109

BIT

- bit test (ANDing memory byte with accumulator A or B)

Description: BITA P (or BITB P)

Each bit of the 8-bit value addressed by P is logically anded with the
corresponding bit of the 8-bit value in accumulator A (or B). The condition
codes are modified to reflect the result but the result is not stored anywhere.
The accumulator and the memory byte are both left unchanged.

Address Modes for P: immediate, direct, indexed, extended

Condition Codes:

BLE

N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of the result are clear.
V - Cleared.

- branch on less than or equal to zero

Description: BLE dd; LBLE DDDD

A branch does not occur unless (a) one and only one of the negative (N bit) and
overflow (V bit) flags are set or (b) the zero flag (Z bit) is set. Having the
negative flag set and the overflow flag clear means that the value of a valid
two’s complement result is less than zero. Having the negative flag clear and
the overflow flag set means that an overflow occurred but, if it hadn't, the
value of the two's complement result would be less than zero. Having the zero
flag set means the value of the result is zero. Thus, a branch occurs if the value
of the two's complement result is less than or equal to zero. dd and DDDD are
memory immediate values. dd is an 8-bit offset and DDDD is a 16-bit offset.
LBLE DDDD indicates a long branch on less than or equal to zero which uses
long relative effective addressing and BLE dd indicates a short branch which
uses relative effective addressing. A branch is accomplished by adding the
memory immediate value to the contents of the program counter and storing the
sum in the program counter. (A branch to a label is equivalent to a branch to an
offset as the offset to the label is calculated by the assembler.)

110 Chapter 4

BLO - branch on lower

Description: BLO dd; LBLO DDDD

A branch does not occur unless the carry flag (C bit) is set. The 'branch on
lower’ instruction is the same as the 'branch on less than zero' except that it
compares unsigned values and ’branch on less than zero’ compares signed
values. dd and DDDD are memory immediate values. dd is an 8-bit offset and
DDDD is a 16-bit offset. LBLO DDDD indicates a long branch on lower which
uses long relative effective addressing and BLO dd indicates a short branch
which uses relative effective addressing. A branch is accomplished by adding
the memory immediate value to the contents of the program counter and storing
the sum in the program counter. (A branch to a label is equivalent to a branch to
an offset as the offset to the label is calculated by the assembler.)

BLS - branch on lower or same

Description: BLS dd; LBLS DDDD

A branch does not occur unless either the carry flag (C bit) or the zero flag (Z
bit) is set. The 'branch on lower or same’ instruction is the same as the 'branch
on less than or equal to zero’ except that it compares unsigned values and
'branch on less than or equal to zero’ compares signed values. dd and DDDD
are memory immediate values. dd is an 8-bit offset and DDDD is a 16-bit
offset. LBLS DDDD indicates a long branch on lower or same which uses long
relative effective addressing and BLS dd indicates a short branch which uses
relative effective addressing. A branch is accomplished by adding the memory
immediate value to the contents of the program counter and storing the sum in
the program counter. (A branch to a label is equivalent to a branch to an offset
as the offset to the label is calcualated by the assembler.)

6809 ARCHITECTURE & INSTRUCTIONS 111

BLT - branch on less than zero

Description: BLT dd; LBLT DDDD

A branch does not occur unless one and only one of the negative (N bit) and
overflow (V bit) flags are set. Having the negative flag set and the overflow
flag clear means that the value of a valid two’s complement result is less than
zero. Having the negative flag clear and the overflow flag set means that an
overflow occurred but, if it hadn't, the value of the two's complement result
would be less than zero. Thus, a branch occurs if the value of the two's
complement result is less than zero. dd and DDDD are memory immediate
values. dd is an 8-bit offset and DDDD is a 16-bit offset. LBLT DDDD
indicates a long branch on less than or equal to zero which uses long relative
effective addressing and BLT dd indicates a short branch which uses relative
effective addressing. A branch is accomplished by adding the memory
immediate value to the contents of the program counter and storing the sum in
the program counter. (A branch to a label is equivalent to a branch to an offset
as the offset to the label is calculated by the assembler.)

BMI - branch on minus

Description: BMI dd; LBMI DDDD

A branch occurs if the negative flag (N bit) is set. Thus, this branch occurs if
the value of the two’s complement result is less than zero without taking into
account that the result might be invalid due to an overflow. dd and DDDD are
memory immediate values. dd is an 8-bit offset and DDDD is a 16-bit offset.
BMI indicates a short branch on minus which uses relative effective addressing
and LBMI indicates a long branch which uses long relative effective
addressing. A branch is accomplished by adding the memory immediate value
to the contents of the program counter and storing the sum in the program
counter. (A branch to a label is equivalent to a branch to an offset as the offset
to the label is calculated by the assembler.)

112 Chapter 4

BNE - branch on not equal

Description: BNE dd; LBNE DDDD

If the zero flag (Z bit) is set then a branch does not occur. If the zero flag is
clear then a branch does occur. dd and DDDD are memory immediate values.
dd is an 8-bit offset and DDDD is a 16-bit offset. LBNE DDDD indicates a
long branch on equal which uses long relative effective addressing and BNE dd
indicates a short branch which uses relative effective addressing. A branch is
accomplished by adding the memory immediate value to the contents of the
program counter and storing the sum in the program counter. (A branch to a
label is equivalent to a branch to an offset as the offset to the label is calculated
by the assembler.)

BPL - branch on plus

Description: BPL dd; LBPL DDDD

A branch occurs if the negative flag (N bit) is clear. Thus, a branch occurs if
the value of the two’s complement result is greater than or equal to zero without
taking into account that the result might be invalid due to an overflow. dd and
DDDD are memory immediate values. dd is an 8-bit offset and DDDD is a
16-bit offset. BPL dd indicates a short branch on plus which uses relative
effective addressing and LBPL DDDD indicates a long branch which uses long
relative effective addressing. A branch is accomplished by adding the memory
immediate value to the contents of the program counter and storing the sum in
the program counter. (A branch to a label is equivalent to a branch to an offset
as the offset to the label is calculated by the assembler.)

6809 ARCHITECTURE & INSTRUCTIONS 113

BRA - branch always

Description: BRA dd; LBRA DDDD

BRA dd cause an unconditional short branch which uses relative effective
addressing and LBRA DDDD causes an unconditional long branch which uses
long relative effective addressing. dd and DDDD are memory immediate
values. dd is an 8-bit offset and DDDD is a 16-bit offset. The branch is
accomplished by adding the memory immediate value to the contents of the
program counter and storing the sum in the program counter. (A branch to a
label is equivalent to a branch to an offset as the offset to the label is calculated
by the assembler.)

BRN - branch never

Description: BRN dd; LBRN DDDD
BRN dd and LBRN DDDD are essentially 'NO-OP’ (no operation)
instructions. dd and DDDD are memory immediate values. dd is an 8-bit offset
and DDDD is a 16-bit offset. (A branch to a label is equivalent to a branch to an
offset as the offset to the label is calculated by the assembler.)

BSR - branch to subroutine

Description: BSR dd; LBSR DDDD

dd and DDDD are memory immediate values. dd is an 8-bit offset and DDDD
is a 16-bit offset. BSR dd indicates a short branch to subroutine which uses
relative effective addressing and LBSR DDDD indicates a long branch which
uses long relative effective addressing. The program counter is pushed onto the
stack in order to act as the return address when program control is returned to
the calling program from the subroutine. The branch is accomplished by adding
the memory immediate value to the contents of the program counter and storing
the sum in the program counter. (A branch to a label is equivalent to a branch to
an offset as the offset to the label is calculated by the assembler.)

114 Chapter 4

BVC - branch on overflow clear

Description: BVC dd; LBVC DDDD

A branch does not occur unless the overflow flag (V bit) is clear. Thus, a
branch occurs if the value of the two's complement result is valid. dd and
DDDD are memory immediate values. dd is an 8-bit offset and DDDD is a
16-bit offset. BVC dd indicates a short branch on overflow clear which uses
relative effective addressing and LBVC DDDD indicates a long branch which
uses long relative effective addressing. A branch is accomplished by adding the
memory immediate value to the contents of the program counter and storing the
sum in the program counter. (A branch to a label is equivalent to a branch to an
offset as the offset to the label is calculated by the assembler.)

BVS - branch on overflow set

Description: BVS dd; LBVS DDDD

A branch does not occur unless the overflow flag (V bit) is set. Thus, a branch
occurs if the value of the two’s complement result is invalid. dd and DDDD are
memory immediate values. dd is an 8-bit offset and DDDD is a 16-bit offset.
BVS dd indicates a short branch on overflow set which uses relative effective
addressing and LBVS DDDD indicates a long branch which uses long relative
effective addressing. A branch is accomplished by adding the memory
immediate value to the contents of the program counter and storing the sum in
the program counter. (A branch to a label is equivalent to a branch to an offset
as the offset to the label is calculated by the assembler.)

6809 ARCHITECTURE & INSTRUCTIONS

CLR - clear accumulator or memory

Description: CLRA, CLRB; CLR P

All bits of the 8-bit operand are cleared to zero.

Address Modes for P: direct, indexed, extended

Condition Codes:
N - Cleared.
Z - Set.
V - Cleared.
C - Cleared.

CMP - compare memory byte to accumulator A or B

Description: CMPA P (or CMPB P)

115

The 8-bit value addressed by P is compared to the 8-bit value in accumulator A
(or B) by subtracting the value addressed by P from the value in the
accumulator. The condition codes are modified to reflect the result but the
result is not stored anywhere. The accumulator and the memory byte are both

left unchanged.

Address Modes for P: immediate, direct, indexed, extended

Condition Codes:
H - Undefined.
N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of the result are clear.
V - Set IFF 8-bit two’s complement overflow.
C - Set IFF there is NO carry from bit 7.

116 Chapter 4

CMP - compare 16 bits of memory to a 16-bit register

Description:. CMPD P; CMPX P (or CMPY P); CMPU P; CMPS P
The contents of the 16-bit value addressed by P is compared to the 16-bit value
in the designated register by subtracting the memory value from the register
value. The condition codes are modified to reflect the result but the result is not
stored anywhere. Neither the register nor the memory value are changed.

Address Modes for P: immediate, direct, indexed, extended

Condition Codes:
N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of the result are clear.
V - Set IFF 16-bit two's complement overflow.
C - Set IFF there is NO carry from bit 7
when the MS byte is operated on.

COM - complement accumulator or memory

Description:. COMA, COMB; COM P
Each bit of the 8-bit operand is logically complemented. Each zero bit becomes
a one and each one bit becomes a zero.

Address Modes for P: direct, indexed, extended

Condition Codes:
N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of the result are clear.
V - Cleared.
C - Set.

6809 ARCHITECTURE & INSTRUCTIONS 117

CWAI - clear and wait for interrupt

Description: CWAI #$XX

The memory immediate byte is ANDed with the condition code register and the
result is stored in the condition code register. The 'entire state saved on stack’
flag (E bit) is set. Then the entire machine state is stacked on the hardware
system stack: the program counter, the user stack pointer, index register Y,
index register X, the direct page register, accumulator B, accumulator A, and
the condition code register. When a (non-masked) interrupt occurs, no further
machine state will be saved before vectoring to the interrupt handling routine.

Condition Codes:
The condition codes may be cleared by the ANDing of the memory immediate
byte with the condition code register.

DA - decimal addition adjust on accumulator A

Description: DAA

The sequence of a single-byte add instruction on accumulator A (either ADDA
or ADCA) followed by a DAA instruction results in a binary coded decimal
(BCD) addition with appropriate carry flag. Both values to be added must be in
proper BCD form which means that all four nybbles must have values between
0 and 9. Multiple-precision additions must add the carry generated by this
DAA instruction into the next higher digit during the add operation
immediately prior to the next DAA. The DAA instruction adds one of the
binary values 00000000, 00000110, 01100000, and 01100110 to accumulator
A. Which value is chosen depends on the following: if (a) the half-carry flag (H
bit) is set or (b) the value of the least significant nybble (LSN) in accumulator
A is greater than 9, then the correction value to be added has 0110 in its LSN; if
(a) the carry flag (C bit) is set or (b) the value of the most significant nybble
(MSN) in accumulator A is greater than 9 or (c) the value of the MSN is greater
than 8 and the value of the LSN is greater than 9, then the correction value to be
added has 0110 in its MSN.

Condition Codes:
N - Set IFF the MSB of the result is set.
Z - Set IFF all bits of the result are clear.
V - Undefined.
C - Set if there is a carry from bit 7 or if
the carry flag was set before the operation.

118 Chapter 4

DEC - decrement accumulator or memory by one

Description: DECA, DECB; DEC P
The value 1 is subtracted from the operand.

Address Modes for P: direct, indexed, extended

Condition Codes:
N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of the result are clear.
V - Set IFF the original operand was 10000000.

EOR - exclusive or memory byte to accumulator A or B

Description: EORA P (or EORB P)
Each bit of the 8-bit value addressed by P is exclusive ored with the
corresponding bit of the 8-bit value in accumulator A (or B) and the result is
stored in accumulator A (or B).

Address Modes for P: direct, extended, immediate, indexed

Condition Codes:
N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of result are clear.
V - Cleared.

6809 ARCHITECTURE & INSTRUCTIONS 119

EXG - exchange registers

Description: EXG R1, R2
The contents of register R1 are exchanged with those of R2. Registers may
only be exchanged with registers of like size. 8-bit registers are to be
exchanged with 8-bit registers and 16-bit registers are to be exchanged with
16-bit registers. The possible 8-bit registers are A, B, CC, and DP and the
possible 16-bit registers are D, X, Y, U, S, and PC.

Condition Codes:
The condition codes are not affected unless one of R1 and R2 is the condition
code register (CC).

INC - increment accumulator or memory by one

Description: INCA, INCB; INC P
The value 1 is added to the operand.

Address Modes for P: direct, indexed, extended

Condition Codes:
N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of the result are clear.
V - Set IFF the original operand was 01111111.

JMP - jump to effective address

Description: JMP P
Program control is transferred to the location equivalent to the effective address
by loading the program counter with the effective address indicated by P.

Address Modes for P: direct, indexed, extended

120 Chapter 4

JSR - jump to subroutine at effective address

Description: JSR P
The program counter is pushed onto the hardware stack in order to act as the
return address when program control is returned to the calling program from
the subroutine. Program control is transferred to the location equivalent to the
effective address by loading the program counter with the effective address
indicated by P.

Address Modes for P: direct, indexed, extended

LD - load memory byue into accumulator A or B

Description: LDA P (or LDB P)
The contents of the 8-bit value addressed by P are loaded into accumulator A
(or B).

Address Modes for P: immediate, direct, indexed, extended

Condition Codes:
N - Set IFF bit 7 of the loaded data is set.
Z - Set IFF all bits of the loaded data are clear.
V - Cleared.

LD -1load 16 bits of memory into a 16-bit register

Description: LDD P; LDX P (or LDY P); LDS P; LDU P
The contents of the 16-bit value addressed by P is loaded into the designated
register.

Address Modes for P: immediate, direct, indexed, extended

Condition Codes:
N - Set IFF bit 15 of the loaded data is set.
Z - Set IFF all bits of the loaded data are clear.
V - Cleared.

6809 ARCHITECTURE & INSTRUCTIONS 121

LEA - load effective address

Description: LEAX P (or LEAY P); LEAS P; LEAU P
Form the effective address to data using the memory addressing mode and load
that address, not the data itself, into the pointer register designated by the
instruction (eg. X for LEAX).

Memory Addressing Mode for P: indexed

Condition Codes:
Z - Set IFF all bits of the result are clear and the

instruction was LEAX or LEAY.
If the instruction was LEAS or LEAU then the Z bit

is not affected.

LSL - logical shift left accumulator or memory

Description: LSLA, LSLB; LSL P
All bits of the 8-bit operand are shifted one place to the left. Bit O is loaded with
a zero. Bit 7 is shifted into the carry flag. The LSL instruction is the same as
the ASL instruction.

Address Modes for P: direct, indexed, extended

Condition Codes:

H - Undefined.

N - Set IFF bit 7 of the result is set.

Z - Set IFF all bits of the result are clear.

V - Set IFF one and only one of bits 6 and 7 of the
original operand is set; otherwise cleared.

C - Set IFF bit 7 of the original operand is set;
otherwise cleared.

122 Chapter 4

LSR - logical shift right accumulator or memory

Description: LSRA, LSRB; LSR P
All bits of the 8-bit operand are shifted one place to the right. Bit 7 is loaded
with a zero. Bit 0 is shifted into the carry flag.

Address Modes for P: direct, indexed, extended

Condition Codes:
N - Cleared.
Z - Set IFF all bits of the result are clear.
C - Set IFF bit 0 of the original operand is set;
otherwise cleared.

MUL - multiply (unsigned) accumulators A and B

Description: MUL
The unsigned binary numbers in accumulators A and B are multiplied together
and the result is stored in the D accumulator. Unsigned multiply allows
multiple-precision operations.

Condition Codes:
Z - Set IFF all bits of the result are clear.
C - Set IFF bit 7 of accumulator B of the result is set.

6809 ARCHITECTURE & INSTRUCTIONS 123

NEG - negate accumulator or memory

Description: NEGA, NEGB; NEG P
The operand is replaced by its two’s complement. (10000000 is replaced by
itself and the V bit is set. 00000000 is replaced by itself and the C bit is cleared]

Address Modes for P: direct, indexed, extended

Condition Codes:
H - Undefined.
N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of the result are clear.
V - Set IFF the original operand was 10000000.
C - Set IFF there is NO carry from bit 7.

NOP - no operation

Description: NOP
This is a single-byte instruction that only causes the program counter to be
incremented. No other registers or memory contents are affected.

OR - inclusive or memory immediate byte toaccumulator A or B

Description: ORA P (or ORB P)
Each bit of the 8-bit value addressed by P is inclusive ored with the
corresponding bit of the 8-bit value in accumulator A (or B) and the result is
stored in accumulator A (or B).

Address Modes for P: immediate, direct, indexed, extended

Condition Codes:
N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of the result are clear.
V - Cleared.

124 Chapter 4

OR - inclusive or memory immediate byte to CC register

Description: ORCC #XX
The contents of the 8-bit immediate value are inclusive ored with the 8-bit
value in the condition code register and the result is stored in the condition code
register.

Condition Codes:
The condition codes will be cleared or set depending on the result stored in the
condition code register.

PSHS - push registers on the system hardware stack

Description: PSHS register list

Any registers specified are pushed onto the system hardware stack. The
possible registers are the PC, U, Y, X, DP, B, A, and CC registers. (The
hardware stack pointer itself cannot be specified] A register list consists of the
register names separated by commas. The registers are always pushed on the
stack in the following order: program counter, user stack pointer, index
register Y, index register X, direct page register, accumulator B, accumulator
A, and condition code register. The assembler converts the list of registers to
an 8-bit immediate memory value whose 8 bits correspond to the 8 registers.
Which registers are pushed depends on which bits of the memory immediate
value are set. Bit 7 corresponds to the program counter, bit 6 to the user stack
pointer, bit 5 to index register Y, bit 4 to index register X, bit 3 to the direct
page register, bit 2 to accumulator B, bit 1 to accumulator A, and bit O to the
condition code register.

6809 ARCHITECTURE & INSTRUCTIONS 125

PSHU - push registers on the user stack

Description: PSHU register list

Any registers specified are pushed onto the user stack. The possible registers
are the PC, S, Y, X, DP, B, A, and CC registers. (The user stack pointer itself
cannot be specified] A register list consists of the register names separated by
commas. The registers are always pushed on the stack in the following order:
program counter, hardware stack pointer, index register Y, index register X,
direct page register, accumulator B, accumulator A, and condition code
register. The assembler converts the list of registers to an 8-bit immediate
memory value whose 8 bits correspond to the 8 registers. Which registers are
pushed depends on which bits of the memory immediate value are set. Bit 7
corresponds to the program counter, bit 6 to the hardware stack pointer, bit 5 to
index register Y, bit 4 to index register X, bit 3 to the direct page register, bit 2
to accumulator B, bit 1 to accumulator A, and bit 0 to the condition code
register.

PULS - pull registers from the system hardware stack

Description: PULS register list

Any registers specified are pulled from the system hardware stack. The
possible registers are the PC, U, Y, X, DP, B, A, and CC registers. (The
hardware stack pointer itself cannot be specified] A register list consists of the
register names separated by commas. The registers are always pulled from the
stack in the following order; condition code register, accumulator A,
accumulator B, direct page register, index register X, index register Y, user
stack pointer, and program counter. The assembler converts the list of registers
to an 8-bit immediate memory value whose 8 bits correspond to the 8 registers.
Which registers are pulled depends on which bits of the memory immediate
value are set. Bit 7 corresponds to the program counter, bit 6 to the user stack
pointer, bit 5 to index register Y, bit 4 to index register X, bit 3 to the direct
page register, bit 2 to accumulator B, bit 1 to accumulator A, and bit 0 to the
condition code register.

Condition Codes:
The condition codes may be changed if the condition code register is pulled
from the stack but otherwise they are unaffected.

126

PULU

Chapter 4

- pull registers from the user stack

Description: PULU register list

Any registers specified are pulled from the user stack. The possible registers
are the PC, S, Y, X, DP, B, A, and CC register. (The user stack pointer itself
cannot be specified] A register list consists of the register names separated by
commas. The registers are always pulled from the stack in the following order:
condition code register, accumulator A, accumulator B, direct page register,
index register X, index register Y, user stack pointer, and program counter.
The assembler converts the list of registers to an 8-bit immediate memory value
whose 8 bits correspond to the 8 registers. Which registers are pulled depends
on which bits of the memory immediate value are set. Bit 7 corresponds to the
program counter, bit 6 to the hardware stack pointer, bit 5 to index register Y,
bit 4 to index register X, bit 3 to the direct page register, bit 2 to accumulator
B, bit 1 to accumulator A, and bit O to the condition code register.

Condition Codes:

ROL

The condition codes may be changed if the condition code register is pulled
from the stack but otherwise they are unaffected.

- rotate left accumulator or memory

Description: ROLA, ROLB; ROL P

All bits of the 8-bit operand are shifted one place to the left. The carry flag is
rotated into bit 0 and bit 7 is rotated into the carry flag.

Address Modes for P: direct, indexed, extended

Condition Codes:

N - Set IFF bit 7 of the result is set.

Z - Set IFF all bits of the result are clear.

V - Set IFF one and only one of bits 6 and 7 of the
original operand is set; otherwise cleared.

C - Set IFF bit 7 of the original operand is set;
otherwise cleared.

6809 ARCHITECTURE & INSTRUCTIONS 127

ROR - rotate right accumulator or memory

Description: RORA, RORB; ROR P
All bits of the 8-bit operand are shifted one place to the right. The carry flag is
rotated into bit 7 and bit O is rotated into the carry flag.

Address Modes for P: direct, indexed, extended

Condition Codes:
N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of the result are clear.
C - Set IFF bit 0 of the original operand is set;
otherwise cleared.

RTI - return from interrupt

Description: RTI

The condition code register is pulled from the system hardware stack. The rest
of the saved machine stack is recovered from the hardware stack and control is
returned to the interrupted program. If the recovered ‘entire state saved on
stack’ flag (E bit) is clear then only the program counter needs to be pulled
from the stack. If the E bit is set then all the following are pulled from the
stack: accumulator A, accumulator B, direct page register, index register X,
index register Y, user stack pointer, and program counter.

Condition Codes:
The condition code register is recovered from the stack.

RTS - return from subroutine

Description: RTS
Program control is returned from the subroutine to the calling program by
pulling the return address from the stack into the program counter.

128 Chapter 4

SBC - subtract carry bit and memory byte from accumulator A or B

Description: SBCA P (or SBCB P)
The contents of the carry flag and the 8-bit value addressed by P are subtracted
from the 8-bit value in accumulator A (or B) and the result is stored in
accumulator A (or B).

Address Modes for P: immediate, direct, indexed, extended

Condition Codes:
H - Undefined.
N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of the result are clear.
V - Set IFF 8-bit two’s complement overflow.
C - Set IFF there is NO carry from bit 7.

SEX - sign extended

Description: SEX
A two’s complement 8-bit value in accumulator B is transformed into a two's
complement 16-bit value in accumulator D. If bit 7 of accumulator B is set then
accumulator A is loaded with 11111111. If bit 7 of accumulator B is clear then
accumulator A is loaded with 00000000.

Condition Codes:
N - Set IFF accumulator A is loaded with 11111111.
Z - Set IFF all bits of accumulator D are clear.

6809 ARCHITECTURE & INSTRUCTIONS 129

ST - store accumulator A or B into memory byte

Description: STA P (or STB P)
The contents of accumulator A (or B) are stored into the memory location
addressed by P.

Address Modes for P: direct, indexed, extended

Condition Codes:
N - Set IFF bit 7 of the stored data is set.
Z - Set IFF all bits of the stored data are clear.
V - Cleared.

ST - store 16-bit register into 16 bits of memory

Description: STD P; STX P (or STY P); STS P; STU P
The contents of the designated register are stored into the consecutive memory
locations addressed by P and P+1.

Address Modes for P: direct, indexed, extended

Condition Codes:
N - Set IFF bit 15 of the stored data is set.
Z - Set IFF all bits of the stored data are clear.
V - Cleared.

130 Chapter 4

SUB - subtract memory byte from accumulator A or B

Description: SUBA P (or SUBB P)
The contents of the 8-bit value addressed by P are subtracted from the 8-bit
value in accumulator A (or B) and the result is stored in accumulator A (or B).

Address Modes for P: immediate, direct, indexed, extended

Condition Codes:
H - Undefined.
N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of the result are clear.
V - Set IFF 8-bit two’s complement overflow.
C - Set IFF there is NO carry from bit 7.

SUB - subtract 16 bits of memory from accumulator D

Description: SUBD P
The contents of the 16-bit value addressed by P is subtracted from the 16-bit
value in accumulator D and the result is stored in accumulator D.

Address Modes for P: immediate, direct, indexed, extended

Condition Codes:
N - Set IFF bit 15 of the result is set.
Z - Set IFF all bits of the result are clear.
V - Set IFF 16-bit two's complement overflow.
C - Set IFF there is NO carry from bit 7.

6809 ARCHITECTURE & INSTRUCTIONS 131

SWI - software interrupt

Description: SWI

The ‘entire state saved on stack’ flag (E bit) is set. Then the entire machine
state is stacked on the hardware system stack: the program counter, the user
stack pointer, index register Y, index register X, the direct page register,
accumulator B, accumulator A, and the condition code register. The 'interrupt
request mask’ flag (I bit) and the ’fast interrupt request mask’ flag (F bit) are
set. Then control is transferred through the SWI vector by loading the program
counter with the contents of locations FFFA and FFFB.

SWI2 - software interrupt 2

Description: SWI2
The ’entire state saved on stack’ flag (E bit) is set. Then the entire machine
state is stacked on the hardware system stack: the program counter, the user
stack pointer, index register Y, index register X, the direct page register,
accumulator B, accumulator A, and the condition code register. Then control is
transferred through the SWI2 vector by loading the program counter with the
contents of locations FFF4 and FFFS.

SWI3 - software interrupt 3

Description: SWI3
The ’entire state saved on stack’ flag (E bit) is set. Then the entire machine
state is stacked on the hardware system stack: the program counter, the user
stack pointer, index register Y, index register X, the direct page register,
accumulator B, accumulator A, and the condition code register. Then control is
transferred through the SWI3 vector by loading the program counter with the
contents of locations FFF2 and FFF3.

132

Chapter 4

SYNC - synchronize to external event

Description: SYNC

TFR

When a SYNC instruction is executed, the computer enters a SYNCing state,
stops processing instructions, and waits on an interrupt. When an interrupt
occurs, the SYNCing state is cleared and processing continues. If the interrupt
is enabled and the interrupt lasts 3 cycles or more, the processor will perform
the interrupt routine. If the interrupt is masked or is shorter than 3 cycles long,
the processor simply continues to the next instruction.

- transfer register to register

Description: TFR R1, R2

The contents of register R1 are loaded into register R2. Registers may only be
transferred between registers of like size. 8-bit registers are to be transferred to
8-bit registers and 16-bit registers are to be transferred to 16-bit registers. The
possible 8-bit registers are A, B, CC, and DP and the possible 16-bit registers
are D, X, Y, U, S, and PC.

Condition Codes:

TST

The condition codes are not affected unless R2 is the condition code register
(CO).

- test accumulator or memory

Description: TSTA, TSTB; TST P

The overflow flag is cleared and the negative and zero flags are set according to
the contents of the 8-bit operand.

Address Modes for P: direct, indexed, extended

Condition Codes:

N - Set IFF bit 7 of the result is set.
Z - Set IFF all bits of the result are clear.
V - Cleared.

6809 ARCHITECTURE & INSTRUCTIONS 133

Assembler Directives

The Assembler directives are instructions to the Assembler, rather than
instructions to be directly translated into object code. This section describes the
directives that are recognized by the Waterloo 6809 Assembler. Detailed descriptions
of each directive are arranged alphabetically. The notations used here are:

**

[]

XYZ

Contains a list of elements, one of which must be selected. Each
choice will be separated by a vertical bar. For example,
(*IFC| IFNC*) indicates that either IFC or IFNC must be selected.

Contains an optional element. If one of a series of elements may be
selected, the available list of choices will be contained within the
brackets. Each choice will be separated by a vertical bar. For
example, [LISTINOLIST] indicates that either LIST or NOLIST
may be selected.

The names of the directives are printed in capital letters. The
required parts of directive operands will also be printed in capital
letters. All elements outside of the angle brackets (<>) must be
specified as-is. For example, the syntactical element [<expr>,]
requires the comma to be specified if the optional element
<number> is selected.

The element names are printed in lower case and contained in angle
brackets. The following elements are used in the subsequent
descriptions:

<comment> A statement’s comment field

<label> A statement label

<expr> An Assembler expression
<filename> A diskette filename
<string>> A string of ASCII characters

<sym> An Assembler symbol

134 Chapter 4

Assembler Expressions

An assembler expression is a combination of symbols, constants, algebraic
operators, and parentheses following the conventional rules of algebra. An expression
specifies a value which is to be used as an operand. Relocatable or externally defined
symbols may be used in an expression but relocatable symbols or expressions cannot
be operated on except for addition or subtraction.

Parenthetical expressions are evaluated first, with the innermost parentheses
being evaluated before any outer ones. Evaluation takes place from left to right.
Operators can operate on numeric constants, single character ASCII literals, and
symbols.

The operators are:

unary minus
(monadic) low byte
(monadic) high byte
(dyadic) shift right
(dyadic) shift left
multiplication
division

addition

subtraction

logical AND
inclusive OR
exclusive OR (1 is the up-arrow on the keyboard)

SR+ *AVAVY

Comment
Description: ; [<string>]

A comment is begun by a semi-colon and consists of everything from the
semi-colonto the end of the line.

6809 ARCHITECTURE & INSTRUCTIONS 135

Include

Description: ;INCLUDE < <filename> >

The ;INCLUDE directive causes the contents of the specified diskette file to be
included in the program in place of the directive. The file is specified by a filename

enclosed by angle brackets. If the filename does not contain a disk drive designation,
the default is drive 0.

DSCT - Data Section
Description: DSCT [<comment>]

The DSCT directive is accepted by the assembler but does not do anything.

END - End of Source Program
Description: END [<comment>]

The END directive indicates that the logical end of the source program has been
encountered.

ENDC - End of Conditional Assembly
Description: ENDC [<comment>]

The ENDC directive is used to signify the end of the current level of conditional
assembly (see IFxx).

136 Chapter 4

ENDM - End of Macro Definition
Description: ENDM [<comment>]

The ENDM directive is used in a macro definition (see MACR). Its presence
indicates the end of the macro definition.

EQU - Equate Symbol to a Value
Description: <label> EQU <expr> [<comment>]

The EQU directive assigns the value of the expression in the operand field to the
label. The EQU directive is one of the directives that assigns a value other than the
program counter to the label. The label cannot be redefined anywhere else in the
program. The expression cannot contain any external references or undefined
symbols. The expression may, however, be relocatable.

FAIL - Programmer Generated Error
Description: FAIL

The FAIL directive will cause an error message to be printed by the Assembler. The
total error count will be incremented as with any other error. The FAIL directive is
normally used in conjunction with conditional assembler directives for exceptional
condition checking. The assembly proceeds normally after the error has been printed.

6809 ARCHITECTURE & INSTRUCTIONS 137

FCB - Form Constant Byte

Description:
[<label>] FCB (*<expr>[,<expr>,..,<expr>1*)[<comment>]

The FCB directive may have one or more operands separated by commas. The value
of each operand is truncated to eight bits, and is stored in a single byte of the object
program. Multiple operands are stored in successive bytes. The operand may be a
numeric constant, a character constant, a symbol, or an expression.

FCC - Form Constant Character String

Description:
[<label>] FCC "<string>"[<comment>]

The FCC directive is used to store ASCII strings into consecutive bytes of memory.
Any of the printable ASCII characters can be contained in the string. The string is
delimited by quotes.

FDB - Form Double Byte Constant

Description:
[<label>] FDB (*<expr>[,<expr>,..,<expr>]*)[<comment>]

The FDB directive may have one or more operands separated by commas. The 16-bit
value corresponding to each operand is stored into two consecutive bytes of the object
program. Multiple operands are stored in successive bytes. The operand may be a
numeric constant, a character constant, a symbol, or an expression.

138 Chapter 4

IFxx - Conditional Assembly Directives
Description: (*IFC iIFNC*) <string 1>,<string 2>
or
(*IFEQ| IFGE|IFGT | IFLE|IFLT|IFNE*) <expr> [<comment>]

The IFxx directives are used to conditionally assemble a section of a source program.
The portion of the source program following the IFxx directive up to the next ENDC
directive is conditionally assembled, depending on the result of the string
comparisons (first form) or depending on the value of the expression in relationto the
condition (the second form).

The IFC directive will cause the subsequent statements to be assembled if the two
strings compare. The IFNC directive will cause the subsequent statements to be
assembled if the two strings do not compare. In either case, if the condition is not met
(comparison in the first case, and no comparison in the second case), the subsequent
statements will be excluded from the assembly. The beginning of <string 1> is the
first non-blank, non-comma character after the IFxx directive. The end of <string
1> is the last character before the first comma. The beginning of <string 2> is the
first character after the first comma. The end of <string 2> is the last character
before the end of the source line. Thus, if the first form of the IFxx directive is used,
no comment can appear on the source statement. Both <string 1> and <string 2>
can be null. <string 1> will be null if only a comma is specified after the IFxx
directive. <string 2> will be null if nothing is found after the comma.

If the second form of the IFxx directive is used, the subsequent statements will be
assembled if the expression is:

IFEQ -- equal to zero

IFGE -- greater than or equal to zero
IFGT -- greater than zero

IFLE -- less than or equal to zero
IFLT -- less than zero

IFNE -- not equal to zero

If the condition is not met, the subsequent statements will be excluded from the
assembly.

6809 ARCHITECTURE & INSTRUCTIONS 139

MACR - Macro Definition
Description: <label> MACR [<comment>]

The MACR directive is used to define a macro. All statements following the MACR
directive up to the next ENDM directive become a part of the macro definition. The
required label is the symbol by which the macro will subsequently be called. The
MACR directive is one of the directives that assigns a value other than the program
counter to the label. Macro names must not be names of existing instruction
mnemonics, root mnemonics (e.g., SUB, EOR, ADD, etc], or Assembler directives.
Macro definitions may not be nested -- that is, another MACR directive cannot be
encountered before the ENDM directive.

NAM - Assign Program Name
Description: NAM [<string> [<comment>]]

The NAM directive is accepted by the assembler but does not do anything.

OPT - Assembler Output Options
Description: OPT [LIST|NOLIST]

OPT LIST will cause the listing to be printed (in the '.1st’ file) from this point on until
an OPT NOLIST directive is encountered. OPT NOLIST will cause the listing to be
turned off from this point on (including the OPT NOLIST directive) until an OPT
LIST directive is encountered. OPT LIST is the default if neither is specified.

140 Chapter 4

ORG - Set Program Counter to Origin

Description: ORG <expr> [<comment>]

The ORG directive changes the program counter to the value specified by the
expression in the operand field. Subsequent statements are assembled into memory

locations starting with the new program counter value. If no ORG directive is
encountered in a source program, the program counter is initialized to zero.

PAGE - Top of Page
Description: PAGE

The PAGE directive causes the Assembler to advance the paper to the top of the next
page.

PSCT - Program Section
Description: PSCT (<comment>)

The PSCT directive is accepted by the assembler but does not do anything.

RMB - Reserve Memory Bytes
Description: [<label>] RMB <expr> [<comment>>]

The RMB directive causes the location counter to be advanced by the value of the
expression in the operand field. This directive reserves a block of memory the length
of which in bytes is equal to the value of the expression. The block of memory
reserved is not initialized to any given value. The expression cannot contain any
external references, forward references, or undefined symbols. The value of the
expression cannot be relocatable.

6809 ARCHITECTURE & INSTRUCTIONS 141

SET - Set Symbol to a Value
Description: <label> SET <expr> [<comment>]

The SET directive assigns the value of the expression in the operand field to the label.
The SET directive functions like the EQU directive. However, labels defined via the
SET directive can have their values redefined in another part of the program (but only
through the use of another SET directive). The SET directive is useful in establishing
temporary or re-usable counters within macros. The value of the expression cannot be
relocatable.

TTL - Initialize Page Heading
Description: TTL [<string>]

The TTL directive is accepted by the assembler but does not do anything.

XDEF - External Symbol Definition
Description: XDEF <sym>[,<sym>,...,<sym>] [<comment>]

The XDEF directive is used to specify that the list of symbols is defined within the
current source program, and that those definitions should be passed to the Waterloo
6809 Linker so that other programs may reference these symbols. If the symbols
contained in the directive’s operand field are not defined in the program, an error will
be generated.

142 Chapter 4

XREF - External Symbol Reference
Description: XREF <sym>[,<sym>,...,<sym>] [<comment>]

The XREF directive is used to specify that the list of symbols is referenced in the
current source program, but is defined (via XDEF directive) in another program.

If the XREF directive is not used to specify that a symbol is defined in another
program, an error will be generated, and all references within the current program to
such a symbol will be flagged as undefined.

Notes 143

144

145

Chapter 5

STRUCTURED PROGRAMMIN
STATEMENT

There are three types of structured programming statements: if statements, guess
statements, and loop statements. If statements and guess statements provide a means
of selection where there are two or more code sequences of which only one is to be
executed. Loop statements make it possible to repeat certain sequences as many times
as necessary.

If Statement

The if statement has two possible forms: if/fendif and if/else/endif.

146 Chapter 5

(a) The if/endif statement has the following form:

IF <condition>

-

ENDIF

If the specified condition is true then execute the statement(s) between the IF
<condition> and the ENDIF; otherwise do not execute them but continue execution
with the statement following the ENDIF.

<condition> is one of: CC, CS, EQ, GE, GT, HI, HS, LE, LO, LS, LT, MI,
NE, PL, VC, and VS. <condition> will be more fully explained later in this section.

(b) The if/else/endif statement has the following form:
IF <condition>

-

ELSE

ENDIF

If the specified condition is true then execute the statement(s) between the IF
<condition> and the ELSE; otherwise execute the statement(s) between the ELSE
and the ENDIF. Then, continue execution with the statement following the ENDIF.

Guess Statement

The guess statement has many possible forms:
guess/endguess,
guess/admit/endguess,
guess/admit/admit/endguess,
guess/admit/admit/admit/endguess, ...

STRUCTURED PROGRAMMING STATEMENTS 147

(a) The guess/endguess statement has the following form:

GUESS

QUIF <condition>

ENDGUESS
Execute the statement(s) between the GUESS and the QUIF <condition>. If the
specified condition is false then execute the statement(s) between the QUIF
<condition> and the ENDGUESS; otherwise do not execute them but quit and
continue execution with the statement following the ENDGUESS.
(b) The guess/admit/endguess statement has the following form:
®

GUESS

QUIF <condition>

ADMIT

ENDGUESS

Execute the statement(s) between the GUESS and the QUIF <condition>. If the
specified condition is false then execute the statement(s) between the QUIF
<condition> and the ADMIT; otherwise execute the statement(s) between the
ADMIT and the ENDGUESS. Then, continue execution with the statement following
the ENDGUESS.

148 Chapter 5§

(i)

GUESS
i)UIF <condition> (1)
;\DMIT
QUIF <condition> (2)

ENDGUESS

Execute the statement(s) between the GUESS and the QUIF <condition>. If the
specified condition (1) is false then execute the statement(s) between the QUIF
<condition> and the ADMIT and then continue execution with the statement
following the ENDGUESS. If the specified condition (1) is true then do the
following: execute the statement(s) between the ADMIT and the QUIF <condition>;
if the specified condition (2) is false then execute the statement(s) between the QUIF
<condition> and the ENDGUESS or if the specified condition (2) is true then simply
continue execution with the statement following the ENDGUESS.

(c) The guess/admit/.../admit/endguess statements all work in the same way as
the guess/admit/endguess statement in (b). When a QUIF <condition> is
encountered: if the condition is false then execution continues with the next
statement; if the condition is true then execution continues with the statement
following the next ADMIT or ENDGUESS. When an ADMIT is encountered,
execution continues with the statement following the ENDGUESS.

STRUCTURED PROGRAMMING STATEMENTS 149
Loop Statement

The loop statement has two possible forms: loop/endloop and loop/until.
(a) The loop/endloop statement has the following form:

LOOP

QUIF <condition>

ENDLOOP

Execute the statement(s) between the LOOP and the QUIF <condition>. If the
specified condition is false then execute the statement(s) between QUIF <condition>
and ENDLOOP; otherwise quit the loop and continue execution with the statement
following the ENDLOOP. After the statement(s) between QUIF <condition> and
ENDLOOP have been executed and the ENDLOOP has been encountered, execution
continues with the statement following the LOOP. The looping process can only be
terminated by the QUIF <condition> being true.

(b) The loop/until statement has the following terms:
@

LOOP

UNTIL <condition>

Execute the statement(s) between the LOOP and the UNTIL <condition). If the
specified condition is false then execution continues with the statement following the
word LOOP; otherwise quit the loop and continue execution with the statement
following the UNTIL <condition>.

150 Chapter 5

(i)

LOOP
QUIF <condition> (1)

UNTIL <condition> (2)

Execute the statement(s) between the LOOP and the QUIF <condition>. If the
specified condition (1) is false then execute the statement(s) between the QUIF
<condition> and the UNTIL <condition>; otherwise continue execution with the
statement following the UNTIL <condition>. After the statement(s) between the
QUIF <condition> and the UNTIL <condition> have been executed and the
UNTIL <condition> has been encountered, the following actions occur: if the
specified condition (2) is false then execution continues with the statement following
the word LOOP; if the specified condition (2) is true then execution continues with
the statement following the UNTIL <condition>.

Condition

<condition> is one of: CC, CS, EQ, GE, GT, HI, HS, LE, LO, LS, LT, MI,
NE, PL, VC, and VS.

CC - carry clear (carry flag clear) (identical to HS)

CS - carry set (carry flag set) (identical to LO)

EQ - equal (zero flag set)

GE - greater than or equal to zero (negative and overflow
flags either both set or both clear)

GT - greater than zero (zero flag clear and negative and
overflow flags either both set or both clear)

HI - higher (carry and zero flags both clear)
(unsigned greater than)

HS - higher or same (carry flag clear) (identical to CC)
(unsigned greater than or equal to)

STRUCTURED PROGRAMMING STATEMENTS

LE - less than or equal to zero (zero flag set or
negative or overflow flag set but not both)

LO - lower (carry flag set) (identical to CS)
(unsigned less than)

LS - lower or same (carry flag and/or zero flag set)
(unsigned less than or equal to)

LT - less than zero
(negative or overflow flag set but not both)

MI - minus (negative flag set)

NE - not equal (zero flag clear)

PL - plus (negative flag clear)

VC - overflow clear (overflow flag clear)

VS - overflow set (overflow flag set)

151

NOTE: Anywhere in the previous examples where there is one QUIF <condition>,

there could be two or more QUIF <condition>'s.

Example:
GUESS

QUIF CC
QUIF EQ

ENDGUESS

152

153

Chapter 6

LINKER

The Waterloo 6809 Linker links together an arbitrary number of relocatable
object modules and produces an absolute executable load module. Subroutines from
the system runtime library may also be linked in.

The Linker Command File

The linker requires a *.cmd’ file which the user must create using the editor. The
linker commands available for the '.cmd’ file are: bank, bankorg, banksize, export,
include, org, and printalv. Comments may be included provided that they are
preceded by semi-colons.

The Load Module Name

The first line of this linker command file is the quoted name of the load module to
be created.

154 Chapter 6

"loadname”

The name of the load module to be created is 'loadname’.

The ORG Command

The ORG command indicates the address in main memory where the module is to
be loaded. This line contains 'org’ followed by an address such as ‘$1000'.

org $1000
The module is to be loaded at hexadecimal address 1000.

Each object module which is to be linked into the load module is specified by a
line giving the filename in quotes.

"obj1.b09"
"0bj2.b09”

Two object modules are to be linked into the load module which, at load time, will be
loaded into main memory at the address specified by the "org’ line.

The BANKSIZE and BANKORG Commands

There is 32K of main memory. As well, there are sixteen 4K 'banks’ of memory
which provide an additional 64K. Each bank is addressed by the hexadecimal
addresses 9000 through 9FFF and only one bank can be accessed at any one time. The
BANKSIZE command specifies the size of the banks and the BANKORG command
specifies their origin in memory. These commands are optional since the only values
that can be specified are the default values: $1000 for the size and $9000 for the
origin.

banksize $1000
bankorg $9000

LINKER 155

The BANK Command

Routines may be loaded into a particular bank by using the BANK command
whose format is the word 'bank’ followed by a decimal number from O to 15. Any
routines which are to be loaded into main memory should all be specified before the
bank command. After the bank command, all loading will be into the designated bank
until another bank command is encountered.

bank 1
"obj4.b09”
"0bj5.b09”
bank 12
"obj6.b09"

Two routines are to be loaded into bank 1 and one routine is to be loaded into bank
12.

The user is responsible for making sure that the routines for each bank will fit into
the allotted 4K. In making this decision, ‘auto-load vectors’ may also have to be
taken into account. Since only one bank can be accessed at a time, one bank can not
directly access another bank. Instead, there is an indirect reference created
automatically by the linker using an auto-load vector. A bank’s auto-load vectors
contain the address and bank numbers of all routines referenced which are located in
another bank. The PRINTALV command will cause the auto-load vector
informationto be displayed in the '.map’ file during the linking process.

The INCLUDE Command

The INCLUDE command is used in two instances.

(1) If any routines from the system library are needed, the following line must be
included.

include "disk/1.watlib.exp”

The system disk is assumed to be on a diskette in drive 1 of the disk drive device;
thus, ‘disk/1.’ is designated.

(2) A user's personal library of routines may be linked into the load module by a
line containing the word ’include’ followed by the quoted name of a library file.

include "personal”

156 Chapter 6
The library file may contain a list of the object modules for the library routines or any
other linker commands.

If "personal” contains the lines

"rout1.b09”
"rout2.b09”

then the line ’include "personal” in the *.cmd’ file causes "rout1.b09” and "rout2.b09"
to be linked into the load module.
The EXPORT Command

The EXPORT command specifies a name and an address in memory with which
this name is to be associated. This location can be accessed by any routine in the load
module which has xref’ed the associated name.
export glovar = $0300
Location $0300 can now be accessed by any routine which contains the line 'xref

glovar’. For example, routine A could store a value at glovar and this value could
then be used later on by routine B.

The Linking Process
In order to start the linking process, enter ‘' when selecting from the menu.

When asked to 'Enter filename:’ enter the name of the linker command file
without including the assumed '.cmd’ suffix.

The linking will then be done. The 'Linker completed’ message indicates the end
of the linking process. Pressing 'RETURN’ will cause a return to the menu. The
linker produces two or three new files with names identical to the load module name
specified in the first line of the '.cmd’ file, except for added suffixes.

The '.mod’ file is the executable load module which is to be loaded and executed
by the monitor.

LINKER 157

The ’.map’ file contains information showing how the object modules are mapped
into the load module.

The “.exp’ file contains the names and addresses of any routines which are xref’ed
in the source program. If a system library routine is xref’ed then the '.cmd’ file must
contain an ‘include "disk/1.watlib.exp™ line. This line will cause all the system
library routines to be included in the ‘.exp’ file. A ’.exp’ file will not be created if
there are no export routines (and if the ‘.cmd’ file does not contain the ‘include
"disk/1.watlib.exp”’ line).

158

159

Chapter 7

MONITOR

The monitor primarily serves to load and execute load modules but is useful in
debugging programs as well. There are several monitor commands: b (bank), ¢
(clear), d (dump), f (fill), g (go), 1 (load), m (modify), p (passthrough), q (quit), r
(registers), s (stop), and t (translate).

In order to enter the monitor, select ‘'m’ from the menu.

Whenever the monitor is ready to receive a command, it prompts with a right
angle bracket ('>').

In order to load a program, enter the command ‘I’ followed by the name of the
load module (the '.mod’ file).

>1 prog.mod

This will load the module into memory at the address specified by the ‘org’ line in the
'.cmd’ file used by the linker to create the load module.

In order to run the program, enter the command g’ followed by the address in
hexadecimal of the loaded module.

160 Chapter 7

>g 1000

This will start execution at hexadecimal address 1000 which is where the program's
first instruction should be located.

When the program is finished executing, control should be returned to the
monitor. Entering the command 'q’ will cause a return to the menu.

>q

The following paragraghs list the monitor commands.

Bank

b <n>

There are 16 banks. <n> should be a hexadecimal number between 0 and F.
>ba

Bank 10 can now be accessed by such commands as d<<ump> and m<odify>.

Clear

c
‘¢’ clears all breakpoints. (Breakpoints are set by s<top>.)

>c
Dump

d <xxxx>
or

d <xxxx>-<yyyy>
or

d <xxxx>.<yy>

MONITOR 161

The dump command always displays 8 bytes per line. The number of bytes
displayed will therefore often be greater than the number of bytes requested.

'd <xxxx>' will display the hexadecimal contents of the hexadecimal addresses
from <xxxx> to (<xxxx> + 7).

>d 1000
The contents of the bytes from 1000 to 1007 will be displayed.

'd <xxxx>-<yyyy>' will display the hexadecimal contents of the hexadecimal
addresses from <xxxx> to <yyyy>.

>d 1000-1020
The contents of the 40 bytes from 1000 to 1027 will be displayed.

'd <xxxx>.<yy>' will display the hexadecimal contents of the hexadecimal
addresses from <xxxx> to (<xxxx> + <yy>).

>d 30.28
The contents of the bytes from 0030 to at least 0058 will be displayed.

Eight bytes per line followed by the ASCII translation are displayed. The contents
of memory may be modified by cursoring to the value of a byte displayed on the

screen and typing over it with a new value. After a dump line has been changed,
'RETURN’ must be pressed in order for the changes in that line to be entered.

Fill

f <xxxx>-<yyyy> <aa>
or
f <xxxx>.<yy> <aa>

'f <xxxx>-<yyyy> <aa>' will fill the hexadecimal addresses from <xxxx>> to
(<yyyy>) with the hexadecimal value <aa>.

>f 1000-1020 0

The 32 bytes from 1000 to 1020 will be filled with 00.

162 Chapter 7
'f <xxxx>.<yy> <aa>' will fill the hexadecimal addresses from <xxxx> to

(<xxxx> + <yy> - 1) with the hexadecimal value <aa>.

>£1000.30 ff

The 48 bytes from 1000 to 102f will be filled with ff.

Go

g <xxxx>

This will start the execution of instructions in sequential order beginning with the
instruction at hexadecimal address <xxxx>. If no <xxxx> address is specified, the
default is the current value of the program counter. Execution will continue until a
software or hardware interrupt occurs to return control to the monitor. The g
instruction will usually be preceded at some point by a 1<oad> instruction which
loads a program into memory.

>g 1000

Load

1 <loadmodule>

This will load the specified load module into memory at the address designated by
the ‘org’ line in the '.cmd’ file used by the linker in creating the load module. In order

to run the program, the g<o> command will then need to be entered.

>1 prog. mod

Modify

m <xxxx> <aa>,<bb>,<cc>,...

This will modify memory beginning with the hexadecimal address <xxxx>.
Address <xxxx> will be set to the value <aa>>; address (<xxxx> + 1) will be set to

the value <bb>; address (<xxxx> + 2) will be set to the value <cc>; et cetera.

>m 20 22 ff

MONITOR 163

The byte at address 0020 will be set to 22 and the byte at address 0021 will be set to
ff.

Passthrough

P

The p command causes the system to go into terminal passthrough mode. All
input which is entered will be sent to the host computer. All output from the host
computer will be displayed on the screen. To get out of host passthrough mode, the
'STOP’ key must be pressed.

>p

Quit
q

To get out of the monitor, the q command must be entered. This will cause a
return to the menu.

>q

Registers

The r command will display the contents of the registers on the screen. The
registers displayed are the PC (program counter), D (accumulator D), X (index
register X), Y (index register Y), U (user stack pointer), S (system stack pointer), CC
(condition code register), and DP (direct page register). The contents of a register
may be modified by cursoring to the displayed value, typing over it, and pressing
'RETURN’.

>r

164 Chapter 7
Stop

s
or
§ <XXXX>

's’ will display the hexadecimal addresses at which any breakpoints have been
set.

>s

's <xxxx>' will set a new breakpoint at hexadecimal address <xxxx> and will
also display the hexadecimal addresses at which any breakpoints are set.

>s 1111
A breakpoint will be set at 1111.

If a breakpoint has been set and then the g<o0> command is entered to run a
program, execution will stop just before the instruction at the breakpoint address is
executed. Control will be returned to the monitor and the contents of the registers will
be displayed. Setting a breakpoint is like inserting a software interrupt at the
breakpoint address. A maximum of four breakpoints can be set at one time. The
¢<lear> command will clear any breakpoints set.

Translate

t <xxxx>
or

t <XXxx>-<yyyy>
or

t <xxxx>.<yy>

't <xxxx>' will display the assembly instruction contained in the hexadecimal
address <xxxx>.

>t 300
The assembly instruction at 0300 will be displayed.

MONITOR 165

't <xxxx>-<yyyy>' will display the assembly instructions contained in the
hexadecimal addresses from <xxxx> to (<yyyy>).

>t 1000-1200
The assembly instructions between 1000 and 1200 will be displayed.

't <xxxx>.<yy>' will display the assembly instructions contained in the
hexadecimal addresses between <xxxx> and (<xxxx> + <yy> - 1).

>t 1000.30

The assembly instructions between 1000 and 102f will be displayed.

166

167

Chapter 8

SYSTEM LIBRARY REFERENCE MANUAL

All routines in the system library have names ending in an underbar (for example,
ISALPHA_). On the keyboard, the underbar is a left-pointing arrow.

The first parameter is always passed in accumulator D. Other parameters are
passed on the stack with the (n)th parameter being pushed on before the (n-1)st
parameter. For example, before calling a routine that expects three parameters, the
third parameter P3 must be pushed on the stack followed by the second parameter P2
and the first parameter P1 must be placed in accumulator D. Two bytes per parameter
must be pushed onto the stack even if the parameter could be contained in one byte.

Any parameters pushed on the stack must be pulled off the stack by the calling
program. (The LEAS command is useful for this.) Parameters should not be reused
because some routines will modify them.

Results are always passed back in accumulator D.

Strings are a collection of characters terminated by a null byte. A null byte is
represented by 00.

168 Chapter 8

FALSE is represented by a zero value while TRUE is represented by a non-zero
value. System routines which return TRUE/FALSE results set the condition codes
appropriately so the calling program can perform EQ/NE tests.

Manipulation of Character Strings and Numbers

There are a large number of routines to manipulate strings and to convert strings
to numbers and numbers to strings.

ISALPHA

ISALPHA _ checks P1 to see if it is an alphabetic character and, if it is, returns
TRUE. If P1 is not an alphabetic character, FALSE is returned.

P1 - character to check

Result - TRUE/FALSE

ISDELIM_

ISDELIM_ checks P1 to see if it is a delimiter character and, if it is, returns
TRUE. If P1 is not a delimiter character, FALSE is returned. A delimiter is any
character which is neither alphabetic nor numeric.

P1 - character to check

Result - TRUE/FALSE

SYSTEM LIBRARY REFERENCE MANUAL 169

ISDIGIT-

ISDIGIT_ checks P1 to see if it is a numeric character and, if it is, returns TRUE.
If P1 is not a numeric character, FALSE is returned.

P1 - character to check

Result - TRUE/FALSE

ISLOWER_

ISLOWERC_ checks P1 to see if it is a lower-case alphabetic character and, if it is,
returns TRUE. If P1 is not a lower-case alphabetic character, FALSE is returned.

P1 - character to check

Result - TRUE/FALSE

ISUPPER_

ISUPPER_ checks P1 to see if it is an upper-case alphabetic character and, if it is,
returns TRUE. If P1 is not an upper-case alphabetic character, FALSE is returned.

P1 - character to check

Result - TRUE/FALSE

LOWER_
LOWER_ converts a character specified by P1 to lower-case.
P1 - character to convert to lower-case

Result - lower-case character

170 Chapter 8

UPPER_
UPPERL_ converts a character specified by P1 to upper-case.
P1 - character to convert to upper-case

Result - upper-case character

ZLOSTR_
ZLOSTR_ converts the characters in the string addressed by P1 to lower-case.

P1 - address of the string

ZUPSTR_
ZUPSTR_ converts the characters in the string addressed by P1 to upper-case.

P1 - address of the string

COPY_

COPY_ copies memory as addressed by P1 to memory addressed by P2 for a
length specified by P3.

P1 - address of the memory to be copied
P2 - address of the destination in memory
P3 - length to copy

SYSTEM LIBRARY REFERENCE MANUAL 171

COPYSTR_
COPYSTR_ copies the string addressed by P1 to memory addressed by P2.

P1 - address of the string to be copied
P2 - address of the destination in memory

PREFIXST_.
PREFIXST- adds a prefix string addressed by P1 to a string addressed by P2.

P1 - address of the prefix string
P2 - address of the string to be prefixed

SUFFIXST_
SUFFIXST_ adds a suffix string addressed by P1 to a string addressed by P2.

P1 - address of the suffix string
P2 - address of the string to be suffixed

EQUAL_

EQUAL_ compares memory as addressed by P1 to memory as addressed by P2.
TRUE is returned if there is equivalence for the length specified by P3; otherwise,
FALSE is returned.

P1 - first memory address
P2 - second memory address

P3 - number of bytes to compare

Result - TRUE/FALSE

172 Chapter 8

LENGTH_

LENGTHL_ calculates the length of the string addressed by P1 and returns the
number of characters in the string.

P1 - address of the string

Result - number of characters in the string

STREQ_

STREQ_ compares the string addressed by P1 to the string addressed by P2.
TRUE is returned if they are equivalent for the length of the P1 string; otherwise
FALSE is returned.

P1 - address of the first string
P2 - address of the second string

Result - TRUE/FALSE

BTOHS_

BTOHS_. converts a binary number addressed by P1 to a hexadecimal string
addressed by P3. The number of bytes in the binary value is specified by P2.

P1 - address of the binary number
P2 - number of bytes in the binary value
P3 - address for the hexadecimal string

SYSTEM LIBRARY REFERENCE MANUAL 173

HSTOB_

HSTOB_. converts a hexadecimal string addressed by P1 to a binary number
addressed by P2. The result returned is the number of bytes in the binary value.

P1 - address of the hexadecimal string
P2 - address for the binary number

Result - number of bytes in the binary value

ITOHS_

ITOHS_ converts an integer specified by P2 to a hexadecimal string addressed by
P1.

P1 - address for the hexadecimal string
P2 - integer to convert

1ITOS_
ITOS_ converts an integer specified by P2 to a decimal string addressed by P1.

P1 - address for the decimal string
P2 - integer to convert

STOL

STOL converts a decimal string addressed by P1 to an integer. The decimal
string may include a plus or minus sign but not a decimal point.

P1 - address of the decimal string

Result - binary representation of the integer

174 Chapter 8

DECIMAL_

DECIMAL._ converts a decimal number addressed by P1 to an integer. P2
specifies the number of digits in the decimal number. The decimal number may only
contain digits. It may not include plus signs, minus signs, or decimal points.

P1 - address of the decimal number
P2 - number of digits in the decimal number

Result - binary representation of the integer

HEX_

HEX_ converts a hexadecimal character specified by P1 to a hexadecimal byte.
P1 - hexadecimal character (0-9, A-F)

Result - binary representation of the hexadecimal character

Input/Output Routines

There are various system library routines provided for input/output. Routines
such as GETCHAR_, PUTCHAR_, and PUTNL_ are for input from the standard
input device and output to the standard output device. Before using those routines, the
INITSTD_ routine should be called to initialize the standard devices for input/output.

Routines like FGETCHAR_, FPUTCHAR_, and FPUTNL_ are for file I/O.
Before getting input from or sending output to a file, the file must be opened by the
OPENE_ routine and, afterwards, the file must be closed by the CLOSEF_ routine.
OPENEF_ must be provided with the address of a filename string and the address of an
access mode character and will return a pointer to a file control block. Any access of
the file for input, output, or closing must refer to this file control block.

SYSTEM LIBRARY REFERENCE MANUAL 175

INITSTD_

INITSTD_ initializes the standard input and output devices for 1/O.

GETCHAR_
GETCHAR_ gets a character from the terminal.

Result - input character

PUTCHAR_
PUTCHARL_ puts a character specified by P1 to the screen.

P1 - character to be output

PUTNL_

PUTNL._ causes a skip to a new line on the screen.

PRINTE_

PRINTE_ provides a means of formatting output to the screen. P1 is the address
of the string to be displayed. This string can contain the following in order to cause
special formatting:

%n - new line

%c - character

%d - decimal number

%h - hexadecimal number
%s - string

176 Chapter 8

Wherever %n, %c, %d, %h, or %s occurs in the string, a substitution value is to be
inserted in its place. %n causes a skip to a new line. %c, %d, %h, and %s must have
substitution values specified by the user. Up to six such substitution values, P2
through P7, may be specified. The substitution value specified for %c must be a
character; the substitution values specified for %d and %h must be integer numbers;
and the substitution value for %s must be the address of a string.

P1 - format string to display
P2 - substitution value
P3-"

P4-"

P7 - substitution value

GETREC_

GETREC_ gets a record from the terminal and stores it in a buffer addressed by
P1. P2 specifies the length of the buffer. The result is the number of characters read.

P1 - address of the record buffer
P2 - length of the record buffer

Result - number of characters read

PUTREC_

PUTREC_ puts a record addressed by P1 out to the screen. The length of the
record is specified by P2.

P1 - address of the record buffer
P2 - length of the record buffer

SYSTEM LIBRARY REFERENCE MANUAL 177

OPENF_

OPENE_ opens a file whose filename string is addressed by P1. (“printer” and
"keyboard” are examples of filename strings. For more information, see the System
Overview: Commodore SuperPET manual.) The mode for which the file is to be
opened is addressed by P2. The mode is to be one of:

"R" - read
"W” - write
"U" - update
"A” - append

"S" - store (write PRG format files)
"L" - load (read PRG format files)

If the open succeeded, OPENF_ returns the address of the file control block. If the
open failed, OPENFE_ returns zero.

P1 - address of the filename string
P2 - address of the file mode string

(Only one character is significant.)

Result - address of the file control block
If the open failed, the result is 0.

CLOSEF_-
CLOSEE_ closes a file whose file control block is addressed by P1.

P1 - address of the file control block

178 Chapter 8

FGETCHAR_

FGETCHAR_ gets a character from a file whose file control block is addressed by
Pl.

P1 - address of the file control block

Result - input character

FPUTCHAR_

FPUTCHAR-_ puts a character specified by P2 out to a file whose file control
block is addressed by P1.

P1 - address of the file control block
P2 - character to be output

FPUTNL_

FPUTNLL_ causes a skip to a new record in a file whose file control block is
addressed by PI.

P1 - address of the file control block

FPRINTF-

FPRINTE_ provides a means of formatting output to a file whose file control
block is addressed by P1. P2 is the address of the string to be output. This string can
contain the following in order to cause special formatting:

SYSTEM LIBRARY REFERENCE MANUAL 179

%n - new line

%c - character

%4d - decimal number

%h - hexadecimal number
%s - string

Wherever %n, %c, %d, %h, or %s occurs in the string, a substitution value is to be
inserted in its place. %n causes a skip to a new record. %c, %d, %h, and %s must
have substitution values specified by the user. Up to six such substitution values, P3
through P8, may be specified. The substitution value specified for %c must be a
character; the substitution values specified for %d and %h must be integer numbers;
and the substitution value for %s must be the address of a string.

P1 - address of the file control block
P2 - format string to output

P3 - substitution value

P4-"

P5-"

P8 - substitution value

FGETREC_
FGETREC_ gets a record from a file whose file control block is addressed by P1
and stores it in a buffer addressed by P2. The length of the buffer is specified by P3.

The result is the number of characters read.

P1 - address of the file control block
P2 - address of the record buffer
P3 - length of the record buffer

Result - number of characters read

FPUTREC_

FPUTREC_ puts a record addressed by P2 out to a file whose file control control
block is addressed by P1. The length of the record is specified by P3.

180 Chapter 8

P1 - address of the file control block
P2 - address of the record buffer
P3 - length of the record buffer

FSEEK__

FSEEK_ seeks to a record in a random file whose file control block is addressed
by P1. The record number is specified by P2.

P1 - address of the file contro! block
P2 - record number

EOF_

EOF_ checks a file whose file control block is addressed by P1 to see if it is at
end-of-file. If the file is at end-of-file, TRUE is returned; otherwise, FALSE is
returned.

P1 - address of the file control block

Result - TRUE/FALSE

EOR_

EOR_ checks a file whose file control block is addressed by P1 to see if it is at
end-of-record. If the file is at end-of-record, TRUE is returned; otherwise, FALSE is
returned.

P1 - address of the file control block

Result - TRUE/FALSE

SYSTEM LIBRARY REFERENCE MANUAL 181

ERRORF_

ERROREF_ gets the error code for a file whose file control block is addressed by
P1. The code returned is one of:

0 - success

2 - end-of-file

3 - error
P1 - address of the file control block

Result - error code for the file (0, 2, or 3)

ERRORMSG_

ERRORMSG_ returns the address of an I/O error message when an error has
occurred. (ERRORF_. may be called to see whether or not there has been an error.)

Result - address of the I/O error message string

MOUNT-
MOUNT_ mounts a new diskette whose device string is addressed by P1.

P1 - address of the device string

RENAMEF_

RENAMEEFE_ renames a file whose filename string is addressed by P1. The new
filename string is addressed by P2.

P1 - address of the old filename string
P2 - address of the new filename string

182 Chapter 8

SCRATCHF_—
SCRATCHE_ scratches a file whose filename string is addressed by P1.

P1 - address of the filename string

DIRCLOSEF_
DIRCLOSEF_ closes a directory whose file control block is addressed by P1.

P1 - address of the file control block

DIROPENF_

DIROPENF_ opens a directory whose filename string is addressed by P1 and
returns the address of the file control block.

P1 - address of the filename string

Result - address of the file control block

DIRREADF_

DIRREADE._ reads a directory entry from a directory whose file control block is
addressed by P1. The buffer into which to read the directory entry is addressed by P2.

P1 - address of the file control block
P2 - address of the directory entry buffer

SYSTEM LIBRARY REFERENCE MANUAL 183

TABSET_

TABSET_ sets ten tabulation stops. Pl is the starting address of ten words
containing the column positions for the tabs.

P1 - address of the ten words containing column positions

TABGET_

TABGET_ returns the address of ten words containing the column positions for
ten tab stops.

Result - address of the ten words containing tab settings

KBDISABL_

KBDISABL_ disables the keyboard scan. (It may be reenabled by KBENABL._..)

KBENABL_

KBENABL._ enables the keyboard scan. (If the keyboard scan has been disabled
by KBDISABL_, KBENABL_ will reenable it.)

PASSTHRU_

PASSTHRUL puts the terminal into host passthrough mode. Depressing the
'STOP' key will cause the routine to return.

184 Chapter 8

Terminal and Serial Input/Qutput Routines

TBREAK_
TBREAK_ tests the terminal’s 'STOP’ key to see if it has been depressed. If it is
has been depressed, TRUE is returned. If it has not been depressed, FALSE is

returned.

Result - TRUE/FALSE

TGETCURS_

TGETCURS_ returns the current position of the cursor on the screen. The high
order byte of the result specifies the row and the low order byte specifies the column.

Result - cursor position (MS byte = row & LS byte = column)

TPUTCURS_

TPUTCURS_ sets the cursor positionto the position specified by P1. The high
order byte of P1 specifies the row and the low order byte specifies the column.

P1 - cursor position (MS byte = row & LS byte = column)

TSETCHAR..

TSETCHARL sets the screen’s character set. If the value is 1, the screen is to
display the ASCII character set. If the value is 2, the screen is to display the APL
character set.

P1 - 1 (for ASCII) or 2 (for APL)

SYSTEM LIBRARY REFERENCE MANUAL 185

SIOINIT_

SIOINIT_ initializes a serial port addressed by P1 for input and/or output using
the speed, parity, and stopbits characteristics specified by P2, P3, and P4
respectively.

P1 - address of the serial port
P2 - speed of the serial port
P3 - parity: even = $60

odd = $20
mark = $A0
space = $EO
P4 - stopbits: one = $00
two = $80

SBREAK_

SBREAK_ tests for a break from a serial port addressed by P1. If there is a break
then TRUE is returned; otherwise, FALSE is returned.

P1 - address of the serial port

Result - TRUE/FALSE

Date and Time Routines

SETDATE_
SETDATE_ sets the date to the date string addressed by P1.

P1 - address of the date string

186 Chapter 8

GETDATE_—

GETDATE_ returns the address of a string containing the date. (The date should
previously have been set by SETDATE_.)

Result - address of the date string

SETTIME_

SETTIME_ sets the time to the four bytes addressed by P1. The four bytes are to
contain the time in hours, minutes, seconds, and sixtieths of a second.

PI - address of the four time bytes

GETTIME_
GETTIME_ returns the time in the four bytes addressed by P1. The four bytes are
to contain the time in hours, minutes, seconds, and sixtieths of a second. (The time

should previously have been set by SETTIME_.)

P1 - address to put the time

SYSTEM LIBRARY REFERENCE MANUAL 187

Miscellaneous Routines

TABLELOO_

TABLELOO-. looks up a sequence of characters addressed by P2 in a table
addressed by P1 and returns the position of the sequence in the table. If the sequence
of characters is not found then zero is returned. The length of the sequence to be
looked up is specified by P3. A table is a collection of strings terminated by a null
string. Each string in the table is comprised of lower case characters followed by
optional upper case characters. The characters being looked up are case insensitive.
In order for a sequence of characters to match a string in the table, its length must be
at least as great as the number of lower case characters in the string and each of its
characters must match the corresponding character in the string. Thus, if a table
contained the string "abcDEF", the following sequences would match that string: abc,
ABCD, abcDE, and ABCDef where the case of the characters in those sequences
does not matter. The sequences A, ab, and aBcDeFg are examples of sequences that
would not match.

P1 - address of the table
P2 - address of the sequence of characters to look up
P3 - length of the sequence of characters to look up

Result - position of the word in the table
If the word was not found, the result is 0.

BANKINIT_

BANKINIT_ performs initializations allowing bank-switching to be used.

CONBINT_

CONBINT-.. creates a connectionto an interrupt processing routine addressed by
P1. (The interrupt routine may be in bank switched storage.) The type of interrupt to
be handled is specified by P2 where:

188 Chapter 8

2 = SWI3
4 = SWI2
6 = FIRQ
8 = IRQ

10 = SWI
12 = NMI

P1 - address of the interrupt processing routine
P2 - type of interrupt (2, 4, 6, 8, 10, or 12)

Notes 189

190

191

Chapter 9

RESERVED WORDS

There are several words in the 6809 assembly language which have special
meanings attached to them and, thus, are referred to as reserved words. They should
not be used in any context other than that indicated by the language. For example,
should a user-defined label have the same name as a reserved word, the results are
unpredictable and it is highly unlikely that the program will work as intended.

A
ADDA
ANDA
ASLA
ASRA

BGE
BITA
BLS
BPL
BVC

ABX
ADDB
ANDB
ASLB
ASRB
BCC
BGT
BITB
BLT
BRA
BVS

ADCA
ADDD
ANDCC
ASLD

BCS
BHI

BLE
BMI
BRN

ADCB
ADMIT
ASL
ASR

BEQ
BHS
BLO
BNE
BSR

192

CC
CLR
CMPA
CPMU
COMA
CWAI

DECB
DSCT
ELSE
ENDIF
EORB
FAIL
GE
HI
IF
IFGT
IFNE
INS
JMP
LBCC
LBGT
LBLO
LBNE
LBSR
LDAA
LDS
LE
LEAY
LS
LSLD
LSRD
MACR
NAM
NEGB
OPT
ORB
PAGE
PSHA
PSHX
PULU
QUIF

CCR

CLRA
CMPB
CMPX
COMB

DAA
DES

END
ENDLOOP
EQ
FCB
GT
HS
IFC
IFLE
INC
INX
JSR
LBCS
LBHI
LBLS
LBPL
LBVC
LDAB
LDU
LEAS
LIST
LSL
LSR
LT
Ml
NE
NOLIST
ORA
ORCC
PC
PSHB
PULA
PULX

CLC
CLRB
CMPD
CMPY
CPX

DEC
DEX

ENDC
ENDM
EQU
FCC
GUESS

IFEQ
IFLT
INCA

LBEQ
LBHS
LBLT
LBRA
LBVS
LDB
LDX
LEAU
LO
LSLA
LSRA

MUL
NEG
NOP
ORAA
ORG
PL
PSHS
PULB

CLI
CLV
CMPS
COM
Cs

DECA
DPR

ENDGUESS
EORA
EXG

FDB

IFGE
IFNC
INCB

LBGE
LBLE
LBMI
LBRN
LDA
LDD
LDY
LEAX
LOOP
LSLB
LSRB

NEGA

ORAB

PSCT

PSHU
PULS

Chapter 9

RESERVED WORDS

RMB
ROR
RTS
S
SEI
STA
STD
STY
SWI
TAB
TPA
TSX

U
vC
X
Y

ROL
RORA

SBCA
SET
STAA
STS
SUBA
SYNC
TAP
TST
TXS
UNTIL
\'A
XDEF

ROLA
RORB

SBCB
SEV
STAB
STU
SUBB

TBA

TSTA
TTL

XREF

193

ROLB
RTI

SEC
SEX
STB
STX
SUBD

TFR
TSTB

194

abx, 102

accumulators, 91

adc, 102

add, 103

addressing
absolute, 95
accumulator, 94
accumulator indexed, 98
accumulator indexed indirect,

98
auto-decrement, 100
auto-decrement indirect, 100
auto-increment, 99
auto-increment indirect, 99
constant-offset indexed, 97
constant-offset indexed
indirect, 97

direct, 95
extended, 95
extended indirect, 96
immediate, 94
indexed, 96
inherent, 94
long relative, 101
register 96
relative, 101

and, 104

asl, 105

asr, 105

bank, 160
bankinit_, 187
bee, 106
bcs, 106
bge, 107
bgt, 107
bhi, 108
bhs, 108
bit, 109
ble, 109
blo, 110
bls, 110
blt, 111

Index

bmi, 111
bne, 112
bpl, 112
bra, 113
brn, 113
bsr, 113
btohs_, 172
bve, 114
bvs, 114

clear, 160
closef_, 177
clr, 115

cmp, 115-116
com, 116
comment, 134
conbint_, 187
condition code register, 92
copy—, 170
copystr—, 171
cwai, 117

da, 117

dec, 118

decimal_, 174
dirclosef_, 182

direct page register, 92
diropenf_, 182
dirreadf_, 182

dsct, 135
dump, 160
end, 135

endc, 135
endm, 136
eof_, 180
eor, 118

eor—, 180
equ, 136

equal_, 171
errorf_, 181

errormsg_, 181
exg, 119

Index

expression, 134

fail, 136
fcb, 137

fce, 137

fdb, 137
fgetchar_, 178
fgetrec_, 179
fill, 161
fprintf_, 178
fputchar_, 178
fputnl , 178
fputrec_, 179
fseek_, 180

getchar_, 175
getdate_, 186

getrec_, 176
gettime_, 186
go, 162
hex_, 174
hstob_, 173
if, 138

inc, 119

include, 135
index registers, 92
initstd_, 175
isalpha_, 168
isdelim_, 168
isdigit_, 169
islower_, 169
isupper_, 169
itohs_, 173
itos_, 173

jmp, 119
jsr, 120

195

kbdisabl_, 183
kbenabl., 183

1d, 120
lea, 121
length_, 172
list, 139
load, 162
lower—, 169
Isl, 121
Isr, 122

macr, 139
modify, 162
mount_, 181
mul, 122

nam, 139
neg, 123
nolist, 139
nop, 123

openf_, 177
opt, 139
or, 123-124
org, 140

page, 140
passthrough, 163
passthru_, 183
prefixst_, 171
printf_, 175
program counter, 92
psct, 140
pshs, 124
pshu, 125
puls, 125
pulu, 126
putchar_, 175
putnl_, 175
putrec_, 176

196 Index

quit, 163 upper—, 170

registers, 163 xdef, 141
renamef_, 181 xref, 142
rmb, 140
rol, 126 zlostr_, 170
ror, 127 zupstr—, 170
rti, 127
rts, 127

sbe, 128
sbreak_, 185
scratchf_, 182
set, 141
setdate_, 185
settime_, 186
sex, 128
sioinit_, 185
st, 129

stack pointers, 92
stoi_, 173
stop, 164
streq—, 172
sub, 130
suffixst_, 171
swi, 131
swi2, 131
swi3, 131
sync, 132

tabget_, 183
tableloo_, 187
tabset_, 183
tbreak_, 184
tfr, 132
tgetcurs—, 184
tputcurs_, 184
translate, 164
tsetchar_, 184
tst, 132

tl, 141

Commodore Magazine

This bi-monthly magazine, published by Commodore, provides a vehicle for sharing the
latest product information on Commodore systems, programming techniques, hardware
interfacing, and applications for the CBM, PET, SuperPET, and VIC Systems. Each issue
contains user application features, columns by leading experts, the latest news on user
clubs, a question/answer hotline column, and reviews of the latest books and software.

The subscription fee is $15.00 for six issues per year within the U.S. and its possessions,
and $25.00 for Canada and Mexico. Make checks payable to COMMODORE BUSINESS
MACHINES, and send to:

Editor, Commodore Magazine
Commodore Business Machines, inc.
681 Moore Road

King of Prussia, PA 19406

The Transactor

The Transactor, which is a monthly publication of Commodore-Canada, is primarily a
technical periodical, containing pertinent hardware and software information for the
CBM, PET, VIC, and SuperPET systems. Each issue features product reviews, hardware
and software evaluations, and programming tips from the finest technical experts on
Commodore products. Additionally, The Transactor contains general information such
as product updates and trade show reports.

The subscription fee is $10.00 for six issues within Canada and the United States, and
$13.00 for all foreign countries. Make checks payable to COMMODORE BUSINESS
MACHINES, INC. and send to:

Editor, The Transactor
Commodore Business Machines, inc.
3370 Pharmacy Avenue
Agincourt, Ontario, Canada M1W 2K4

This manual describes the Waterloo 6809 Assembler, Linker and
Monitor systems. It provides all the details necessary to develop and
debug programs written in the 6809 assembly language for the
Cn;nmodore SuperPET Particular features described in the book
include:

B The Motorola 6809 microcomputer system architecture found
in the Commodore SuperPET including the details of the
bank-switched memory

B The assembly language instructions and directives
The Structured Programming statements in the language

B The Waterloo 6809 linker, including the details of how to
produce programs residing in the bank-switched memory

B The Waterloo 6809 monitor which is used to interactively
debug programs

B The Waterloo library of routines which is resident in the
read-only memory and may be called to perform common
functions

The book is organized into two sections. The first section contains a
collection of annotated examples to be used as a tutorial. The second
part contains the comprehensive details of the 6809 Assembler and
development systems.

DISTRIBUTED BY

Howard W. Sams & Co., Inc.

4300 WEST G2ND ST, INDIANAPOLIS, INDIANA 48288 USA

$10.95/21908 ISBN: 0-672-21908-5

